

### Multicore Fixed and Floating-Point Digital Signal Processor

Check for Evaluation Modules (EVM): TMS320C6678

## 1 TMS320C6672 Features and Description

### 1.1 Features

- Two TMS320C66x<sup>™</sup> DSP Core Subsystems (C66x CorePacs), Each with
  - 1.0 GHz, 1.25 GHz, or 1.5 GHz C66x
     Fixed/Floating-Point CPU Core
    - > 48 GMAC/Core for Fixed Point @ 1.5 GHz
    - > 24 GFLOP/Core for Floating Point @ 1.5 GHz
  - Memory
    - > 32K Byte L1P Per Core
    - > 32K Byte L1D Per Core
    - > 512K Byte Local L2 Per Core
- Multicore Shared Memory Controller (MSMC)
  - 4096KB MSM SRAM Memory Shared by Two DSP C66x CorePacs
  - Memory Protection Unit for Both MSM SRAM and DDR3\_EMIF
- Multicore Navigator
  - 8192 Multipurpose Hardware Queues with Queue Manager
  - Packet-Based DMA for Zero-Overhead Transfers
- Network Coprocessor
  - Packet Accelerator Enables Support for
    - > Transport Plane IPsec, GTP-U, SCTP, PDCP
    - > L2 User Plane PDCP (RoHC, Air Ciphering)
    - 1-Gbps Wire-Speed Throughput at 1.5 MPackets Per Second
  - Security Accelerator Engine Enables Support for
    - IPSec, SRTP, 3GPP, WiMAX Air Interface, and SSL/TLS Security
    - ECB, CBC, CTR, F8, A5/3, CCM, GCM, HMAC, CMAC, GMAC, AES, DES, 3DES, Kasumi, SNOW 3G, SHA-1, SHA-2 (256-bit Hash), MD5
    - > Up to 2.8 Gbps Encryption Speed

- Peripherals
  - Four Lanes of SRIO 2.1
    - > 1.24/2.5/3.125/5 GBaud Operation Supported Per Lane
    - Supports Direct I/O, Message Passing
    - Supports Four 1×, Two 2×, One 4×, and Two 1× + One 2× Link Configurations
  - PCle Gen2
    - > Single Port Supporting 1 or 2 Lanes
    - Supports Up To 5 GBaud Per Lane
  - HyperLink
    - Supports Connections to Other KeyStone Architecture Devices Providing Resource Scalability
    - > Supports up to 50 Gbaud
  - Gigabit Ethernet (GbE) Switch Subsystem
    - > Two SGMII Ports
    - > Supports 10/100/1000 Mbps Operation
  - 64-Bit DDR3 Interface (DDR3-1600)
  - > 8G Byte Addressable Memory Space
  - 16-Bit EMIF
  - Two Telecom Serial Ports (TSIP)
    - > Supports 1024 DS0s Per TSIP
    - Supports 2/4/8 Lanes at 32.768/16.384/8.192 Mbps Per Lane
  - UART Interface
  - I<sup>2</sup>C Interface
  - 16 GPIO Pins
  - SPI Interface
  - Semaphore Module
  - Ten 64-Bit Timers
  - Three On-Chip PLLs
- Commercial Temperature:
   0°C to 85°C
- Extended Temperature:
  - -40°C to 100°C



**1.2 Applications** 

- Mission-Critical Systems
- High-Performance Computing Systems
- Communications
- Audio
- Video Infrastructure
- Imaging
- Analytics
- Networking
- Media Processing
- Industrial Automation
- Automation and Process Control

### **1.3 KeyStone Architecture**

TI's KeyStone Multicore Architecture provides a high-performance structure for integrating RISC and DSP cores with application-specific coprocessors and I/O. KeyStone is the first of its kind that provides adequate internal bandwidth for nonblocking access to all processing cores, peripherals, coprocessors, and I/O. This is achieved with four main hardware elements: Multicore Navigator, TeraNet, Multicore Shared Memory Controller, and HyperLink.

Multicore Navigator is an innovative packet-based manager that controls 8192 queues. When tasks are allocated to the queues, Multicore Navigator provides hardware-accelerated dispatch that directs tasks to the appropriate available hardware. The packet-based system on a chip (SoC) uses the two Tbps capacity of the TeraNet switched central resource to move packets. The Multicore Shared Memory Controller enables processing cores to access shared memory directly without drawing from TeraNet's capacity, so packet movement cannot be blocked by memory access.

HyperLink provides a 50-Gbaud chip-level interconnect that allows SoCs to work in tandem. Its low-protocol overhead and high throughput make HyperLink an ideal interface for chip-to-chip interconnections. Working with Multicore Navigator, HyperLink dispatches tasks to tandem devices transparently and executes tasks as if they are running on local resources.

### **1.4 Device Description**

The TMS320C6672 DSP is a highest-performance fixed/floating-point DSP that is based on TI's KeyStone multicore architecture. Incorporating the new and innovative C66x DSP core, this device can run at a core speed of up to 1.5 GHz. For developers of a broad range of applications, such as mission-critical systems, medical imaging, test and automation, and other applications requiring high performance, TI's TMS320C6672 DSP offers 3 GHz cumulative DSP and enables a platform that is power-efficient and easy to use. In addition, it is fully backward compatible with all existing C6000 family fixed and floating point DSPs.

TI's KeyStone architecture provides a programmable platform integrating various subsystems (C66x cores, memory subsystem, peripherals, and accelerators) and uses several innovative components and techniques to maximize intra-device and inter-device communication that allows the various DSP resources to operate efficiently and seamlessly. Central to this architecture are key components such as Multicore Navigator that allows for efficient data management between the various device components. The TeraNet is a non-blocking switch fabric enabling fast and contention-free internal data movement. The multicore shared memory controller allows access to shared and external memory directly without drawing from switch fabric capacity.



For fixed-point use, the C66x core has 4× the multiply accumulate (MAC) capability of C64x+ cores. In addition, the C66x core integrates floating point capability and the per-core raw computational performance in an industry-leading 48 GMACS/core and 24 GFLOPS/core (@1.5 GHz operating frequency). It can execute 8 single-precision floating point MAC operations per cycle and can perform double- and mixed-precision operations, and is IEEE754 compliant. The C66x core incorporates 90 new instructions (compared to the C64x+ core) targeted for floating point and vector math oriented processing. These enhancements yield sizeable performance improvements in popular DSP kernels used in signal processing, mathematical, and image acquisition functions. The C66x core is backwards code-compatible with TI's previous generation C6000 fixed and floating point DSP cores, ensuring software portability and shortened software development cycles for applications migrating to faster hardware.

The C6672 DSP integrates a large amount of on-chip memory. In addition to 32KB of L1 program and data cache, there is 512KB of dedicated memory per core that can be configured as mapped RAM or cache. The device also integrates 4096KB of Multicore Shared Memory that can be used as a shared L2 SRAM and/or shared L3 SRAM. All L2 memories incorporate error detection and error correction. For fast access to external memory, this device includes a 64-bit DDR-3 external memory interface (EMIF) running at 1600 MHz and has ECC DRAM support.

This family supports a plethora of high speed standard interfaces including RapidIO ver 2, PCI Express Gen2, and Gigabit Ethernet, as well as an integrated Ethernet switch. It also includes I<sup>2</sup>C, UART, Telecom Serial Interface Port (TSIP), and a 16-bit EMIF, along with general purpose CMOS IO. For high throughput, low latency communication between devices or with an FPGA, this device also sports a 50-Gbaud full-duplex interface called HyperLink. Adding to the network awareness of this device is a network co-processor that includes both packet and optional security acceleration. The packet accelerator can process up to 1.5 M packets/s and enables a single IP address to be used for the entire multicore C6672 device. It also provides L2 to L4 classification, along with checksum and QoS capabilities.

The C6672 device has a complete set of development tools, which includes: an enhanced C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows<sup>®</sup> debugger interface for visibility into source code execution.



## 1.5 Functional Block Diagram

Figure 1-1 shows the functional block diagram of the TMS320C6672 device.

### Figure 1-1 Functional Block Diagram





## 1.6 Release History

| Revision | Date          | Description/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPRS708E | March 2014    | <ul> <li>Added DSP_SUSP_CTL register section</li> <li>Updated Core Before IO Power Sequencing diagram, changing clock signal SYSCLK1P&amp;N to REFCLK1P&amp;N</li> <li>Updated the Trace timing diagram</li> <li>Updated Parameter Table Index bit field in I<sup>2</sup>C boot configuration</li> <li>Updated PKTDMA_PRI_ALLOC register to be CHIP_MSIC_CTL register with new bit field added.</li> <li>Updated OUTPUT_DIVIDE default value and PLL clock formula in PLL Settings section</li> <li>Updated Chip Select field description in SPI boot device configuration table</li> <li>Corrections applied to EMIF16 Boot Device Configuration Bit Fields</li> <li>Restored Parameter Information section</li> </ul>                                                                                            |
| SPRS708D | April 2013    | <ul> <li>Added Initial Startup row for CVDD in Recommended Operating Conditions table</li> <li>Added DDR3PLLCTL1 and PASSPLLCTL1 registers to Device Status Control Registers table</li> <li>Added CVDD and SmartReflex voltage parameter in SmartReflex switching table</li> <li>Added HOUT timing diagram in Host Interrupt Output section</li> <li>Added MPU Registers Reset Values section</li> <li>Corrected PASSCLK(N/P) max cycle time from 6.4 ns to 25 ns</li> <li>Corrected <i>Reserved</i> to be <i>Assert local reset to all CorePacs</i> in LRESET and NMI decoding table</li> <li>Corrected PASS PLL clock to SRIOSGMIICLK in the boot device values table for Ethernet.</li> <li>Updated the Timer numbering across the whole document</li> <li>Updated DDR3 PLL initialization sequence</li> </ul> |
| SPRS708C | February 2012 | <ul> <li>Added TeraNet connection figures and added bridge numbers to the connection tables</li> <li>Changed TPCC to EDMA3CC and TPTC to EDMA3TC</li> <li>Changed chip level interrupt controller name from INTC to CIC</li> <li>Added the DDR3 PLL and PASS PLL Initialization Sequence</li> <li>Added DEVSPEED Register section</li> <li>Updated device frequency in the feature section</li> <li>Corrected the SPI, DDR3, and Hyperbridge config/data memory map addresses</li> <li>Restricted Output Divide of SECCTL Register to max value of divide by 2</li> </ul>                                                                                                                                                                                                                                          |
| SPRS708B | August 2011   | <ul> <li>Updated the timing and electrical sections of several peripherals</li> <li>Updated the core-specific and general-purpose timer numbers</li> <li>Updated the connection matrix tables in chapter 4 "System Interconnection"</li> <li>Updated device boot configuration tables and figures</li> <li>Updated DDR3 and PASS PLL timing figures</li> <li>Removed section 7.1 "Parameter Information"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |
| SPRS708A | July 2011     | <ul> <li>Added sections: NMI and LRSET</li> <li>Added Pin Map diagrams</li> <li>Added MAINPLLCTL1, DDR3PLLCTL1 and PAPLLCTL1 registers</li> <li>Changed PLL diagrams of MAIN PLL, DDR3 PLL and PASS PLL</li> <li>Changed C66x DSP System PLL Configuration table to include 1000 MHz and 1250 MHz columns</li> <li>Corrected items in the Memory Map Summary table</li> <li>Changed all occurrences of PA_SS to Network Coprocessor</li> <li>Updated the complete Power-up sequencing section. RESETFULL must always de-assert after POR</li> </ul>                                                                                                                                                                                                                                                                |
| SPRS708  | November 2010 | Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

For detailed revision information, see "Revision History" on page 236.





# Contents

| 1 | ΤN   | 153200 | C6672 Features and Description1                   |  |
|---|------|--------|---------------------------------------------------|--|
|   | 1.1  |        | ures1                                             |  |
|   | 1.2  | Appl   | ications2                                         |  |
|   | 1.3  | KeyS   | tone Architecture2                                |  |
|   | 1.4  | Devie  | ce Description2                                   |  |
|   | 1.5  | Func   | tional Block Diagram4                             |  |
|   | 1.6  | Relea  | ase History5                                      |  |
| 2 | De   | vice O | verview 13                                        |  |
|   | 2.1  | Devie  | ce Characteristics 13                             |  |
|   | 2.2  | DSP (  | Core Description 14                               |  |
|   | 2.3  | Mem    | ory Map Summary 17                                |  |
|   | 2.4  |        | Sequence 23                                       |  |
|   | 2.5  | Boot   | Modes Supported and PLL Settings 24               |  |
|   |      | 2.5.1  | Boot Device Field 25                              |  |
|   |      | 2.5.2  | Device Configuration Field 26                     |  |
|   |      | 2.5.3  | Boot Parameter Table 31                           |  |
|   |      | 2.5.4  | PLL Boot Configuration Settings 38                |  |
|   | 2.6  |        | nd-Level Bootloaders 38                           |  |
|   | 2.7  |        | iinals                                            |  |
|   |      | 2.7.1  | Package Terminals 39                              |  |
|   |      | 2.7.2  | Pin Map 39                                        |  |
|   | 2.8  |        | inal Functions                                    |  |
|   | 2.9  |        | elopment and Support 70                           |  |
|   |      | 2.9.1  | Development Support                               |  |
|   |      | 2.9.2  | Device Support                                    |  |
| _ | 2.10 |        | ated Documentation from Texas Instruments 72      |  |
| 3 |      |        | onfiguration 73                                   |  |
|   | 3.1  |        | ce Configuration at Device Reset                  |  |
|   | 3.2  | •      | oheral Selection After Device Reset               |  |
|   | 3.3  |        | ce State Control Registers                        |  |
|   |      | 3.3.1  | Device Status Register                            |  |
|   |      | 3.3.2  | Device Configuration Register (DEVCFG) 79         |  |
|   |      | 3.3.3  | JTAG ID Register (JTAGID) Description             |  |
|   |      | 3.3.4  | Kicker Mechanism Register                         |  |
|   |      | 3.3.5  | (KICK0 and KICK1)                                 |  |
|   |      | 3.3.5  | DSP Boot Address Register<br>(DSP_BOOT_ADDRn)     |  |
|   |      | 3.3.6  | LRESETNMI PIN Status Register                     |  |
|   |      | 5.5.0  | (LRSTNMIPINSTAT)                                  |  |
|   |      | 3.3.7  | LRESETNMI PIN Status Clear Register               |  |
|   |      | 5.5.7  | (LRSTNMIPINSTAT_CLR)                              |  |
|   |      | 3.3.8  | Reset Status Register (RESET_STAT)                |  |
|   |      | 3.3.9  | Reset Status Clear Register (RESET_STAT_CLR) . 82 |  |
|   |      | 3.3.10 | Boot Complete Register (BOOTCOMPLETE) 83          |  |
|   |      | 3.3.11 | Power State Control Register (PWRSTATECTL) 84     |  |
|   |      | 3.3.12 | NMI Event Generation to CorePac Register          |  |
|   |      | 0.0112 | (NMIGRx)                                          |  |
|   |      | 3.3.13 | IPC Generation Registers (IPCGRx)                 |  |
|   |      | 3.3.14 | IPC Acknowledgement Registers (IPCARx) 86         |  |
|   |      | 3.3.15 | IPC Generation Host Register (IPCGRH)             |  |
|   |      | 3.3.16 | IPC Acknowledgement Host Register                 |  |
|   |      |        | (IPCARH)                                          |  |
|   |      | 3.3.17 | Timer Input Selection Register (TINPSEL) 88       |  |
|   |      | 3.3.18 | Timer Output Selection Register                   |  |
|   |      |        | (TOUTPSEL)                                        |  |
|   |      | 3.3.19 | Reset Mux Register (RSTMUXx)                      |  |
|   |      |        |                                                   |  |

|   | 3.3.20 DSP Suspension Control Register<br>(DSP_SUSP_CTL)91                  |
|---|-----------------------------------------------------------------------------|
|   | 3.3.21 Device Speed Register (DEVSPEED)93                                   |
|   | 3.3.22 Chip Miscellaneous Control Register                                  |
|   | (CHIP_MISC_CTL)93                                                           |
|   | 3.4 Pullup/Pulldown Resistors                                               |
| 4 | System Interconnect                                                         |
|   | 4.1 Internal Buses and Switch Fabrics                                       |
|   | 4.2Switch Fabric Connections964.3Bus Priorities104                          |
| 5 |                                                                             |
| J | C66x CorePac                                                                |
|   | 5.1.1 L1P Memory                                                            |
|   | 5.1.2 L1D Memory                                                            |
|   | 5.1.3 L2 Memory                                                             |
|   | 5.1.4 MSM SRAM                                                              |
|   | 5.1.5 L3 Memory109                                                          |
|   | 5.2 Memory Protection110                                                    |
|   | 5.3 Bandwidth Management111                                                 |
|   | 5.4 Power-Down Control111                                                   |
|   | 5.5 C66x CorePac Revision112                                                |
|   | 5.6 C66x CorePac Register Descriptions112                                   |
| 6 | Device Operating Conditions                                                 |
|   | 6.1 Absolute Maximum Ratings                                                |
|   | 6.2 Recommended Operating Conditions                                        |
|   | 6.3 Electrical Characteristics                                              |
| 7 | 6.4 Power Supply to Peripheral I/O Mapping116                               |
| / | Peripheral Information and<br>Electrical Specifications117                  |
|   | 7.1 Parameter Information                                                   |
|   | 7.1.1 Timing Parameters and Board Routing                                   |
|   | Analysis                                                                    |
|   | 7.1.2 1.8-V LVCMOS Signal Transition Levels117                              |
|   | 7.2 Recommended Clock and Control Signal                                    |
|   | Transition Behavior117                                                      |
|   | 7.3 Power Supplies118                                                       |
|   | 7.3.1    Power-Supply Sequencing                                            |
|   | 7.3.2 Power-Down Sequence124                                                |
|   | 7.3.3 Power Supply Decoupling and                                           |
|   | Bulk Capacitors         124           7.3.4         SmartReflex         125 |
|   | 7.4 Power Sleep Controller (PSC)                                            |
|   | 7.4.1 Power Domains                                                         |
|   | 7.4.2 Clock Domains                                                         |
|   | 7.4.3 PSC Register Memory Map128                                            |
|   | 7.5 Reset Controller                                                        |
|   | 7.5.1 Power-on Reset131                                                     |
|   | 7.5.2 Hard Reset132                                                         |
|   | 7.5.3 Soft Reset133                                                         |
|   | 7.5.4 Local Reset                                                           |
|   | 7.5.5 Reset Priority                                                        |
|   | 7.5.6 Reset Controller Register                                             |
|   | 7.5.7         Reset Electrical Data / Timing                                |
|   | 7.6.1 Main PLL Controller Device-Specific                                   |
|   | Information                                                                 |
|   | 7.6.2 PLL Controller Memory Map140                                          |

### TMS320C6672

SPRS708E—November 2010—Revised March 2014



| 7.6.3     | Main PLL Control Register 147                    |
|-----------|--------------------------------------------------|
| 7.6.4     | Main PLL and PLL Controller Initialization       |
| 765       | Sequence                                         |
| 7.6.5     | Main PLL Controller/SRIO/HyperLink/PCle          |
| 7.7 DD3   | Clock Input Electrical Data/Timing               |
| 7.7.1     | DDR3 PLL Control Register                        |
| 7.7.2     | DDR3 PLL Device-Specific Information 150         |
| 7.7.2     | DDR3 PLL Initialization Sequence                 |
| 7.7.4     | DDR3 PLL Input Clock Electrical Data/Timing. 152 |
|           | SPLL         153                                 |
| 7.8.1     | PASS PLL Control Register                        |
| 7.8.2     | PASS PLL Device-Specific Information 154         |
| 7.8.3     | PASS PLL Initialization Sequence                 |
| 7.8.4     | PASS PLL Input Clock Electrical Data/Timing 155  |
| ,         | inced Direct Memory Access (EDMA3)               |
|           | ontroller                                        |
| 7.9.1     | EDMA3 Device-Specific Information                |
| 7.9.2     | EDMA3 Channel Controller Configuration 157       |
| 7.9.3     | EDMA3 Transfer Controller Configuration 157      |
| 7.9.4     | EDMA3 Channel Synchronization Events 158         |
| 7.10 Inte | errupts                                          |
| 7.10.1    | Interrupt Sources and Interrupt Controller 162   |
| 7.10.2    | CIC Registers                                    |
| 7.10.3    | Inter-Processor Register Map                     |
| 7.10.4    | NMI and LRESET 182                               |
| 7.10.5    | External Interrupts Electrical Data/Timing 183   |
| 7.10.6    | Host Interrupt Output                            |
| 7.11 Mei  | mory Protection Unit (MPU)                       |
| 7.11.1    | MPU Registers 187                                |
| 7.11.2    | MPU Programmable Range Registers 192             |
|           | R3 Memory Controller 197                         |
| 7.12.1    | DDR3 Memory Controller Device-Specific           |
|           | Information 197                                  |
| 7.12.2    |                                                  |
|           | Consideration 197                                |
|           |                                                  |

|   | 7.12.3 DDR3 Memory Controller Electrical                      |
|---|---------------------------------------------------------------|
|   | Data/Timing198                                                |
|   | 7.13 I <sup>2</sup> C Peripheral                              |
|   | 7.13.1 I <sup>2</sup> C Device-Specific Information           |
|   | 7.13.2 I <sup>2</sup> C Peripheral Register Description(s)200 |
|   | 7.13.3 I <sup>2</sup> C Electrical Data/Timing201             |
|   | 7.14 SPI Peripheral                                           |
|   | 7.14.1 SPI Electrical Data/Timing204                          |
|   | 7.15 HyperLink Peripheral207                                  |
|   | 7.15.1 HyperLink Device-Specific Interrupt Event207           |
|   | 7.15.2 HyperLink Electrical Data/Timing209                    |
|   | 7.16 UART Peripheral                                          |
|   | 7.17 PCle Peripheral                                          |
|   | 7.18 TSIP Peripheral213                                       |
|   | 7.18.1 TSIP Electrical Data/Timing213                         |
|   | 7.19 EMIF16 Peripheral215                                     |
|   | 7.19.1 EMIF16 Electrical Data/Timing215                       |
|   | 7.20 Packet Accelerator                                       |
|   | 7.21 Security Accelerator                                     |
|   | 7.22 Gigabit Ethernet (GbE) Switch Subsystem218               |
|   | 7.23 Management Data Input/Output (MDIO)220                   |
|   | 7.24 Timers                                                   |
|   | 7.24.1 Timers Device-Specific Information                     |
|   | 7.24.2 Timers Electrical Data/Timing                          |
|   | 7.25 Serial RapidIO (SRIO) Port222                            |
|   | 7.26 General-Purpose Input/Output (GPIO)                      |
|   | 7.26.1 GPIO Device-Specific Information                       |
|   | 7.26.2 GPIO Electrical Data/Timing223                         |
|   | 7.27 Semaphore2                                               |
|   | 7.28 Emulation Features and Capability224                     |
|   | 7.28.1 Advanced Event Triggering (AET)224                     |
|   | 7.28.2 Trace                                                  |
|   | 7.28.3 IEEE 1149.1 JTAG                                       |
| 8 | Revision History228                                           |
| 9 | Mechanical Data233                                            |
|   | 9.1 Thermal Data233                                           |
|   | 9.2 Packaging Information                                     |



# List of Figures

| Figure 1-1                                                                                                                                                                                                                                                                                       | Functional Block Diagram4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-1                                                                                                                                                                                                                                                                                       | DSP Core Data Paths 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Figure 2-2                                                                                                                                                                                                                                                                                       | Boot Mode Pin Decoding 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 2-3                                                                                                                                                                                                                                                                                       | No Boot/ EMIF16 Configuration Fields 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 2-4                                                                                                                                                                                                                                                                                       | Serial Rapid I/O Device Configuration Fields 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-5                                                                                                                                                                                                                                                                                       | Ethernet (SGMII) Device Configuration Fields 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-6                                                                                                                                                                                                                                                                                       | PCI Device Configuration Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-7                                                                                                                                                                                                                                                                                       | I <sup>2</sup> C Master Mode Device Configuration<br>Bit Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-8                                                                                                                                                                                                                                                                                       | I <sup>2</sup> C Passive Mode Device Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 2-9                                                                                                                                                                                                                                                                                       | Bit Fields       29         SPI Device Configuration Bit Fields       29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 2-10                                                                                                                                                                                                                                                                                      | HyperLink Boot Device Configuration Fields 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 2-11                                                                                                                                                                                                                                                                                      | CYP 841-Pin BGA Package (Bottom View) 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 2-12                                                                                                                                                                                                                                                                                      | Pin Map Quadrants (Bottom View)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figure 2-13                                                                                                                                                                                                                                                                                      | Upper Left Quadrant—A (Bottom View)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 2-14                                                                                                                                                                                                                                                                                      | Upper Right Quadrant—B (Bottom View) 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 2-15                                                                                                                                                                                                                                                                                      | Lower Right Quadrant—C (Bottom View) 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 2-16                                                                                                                                                                                                                                                                                      | Lower Left Quadrant—D (Bottom View) 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Figure 2-17                                                                                                                                                                                                                                                                                      | C66x DSP Device Nomenclature (including the TMS320C6672)71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure 3-1                                                                                                                                                                                                                                                                                       | Device Status Register 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 3-2                                                                                                                                                                                                                                                                                       | Device Configuration Register (DEVCFG) 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 3-3                                                                                                                                                                                                                                                                                       | JTAG ID Register (JTAGID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure 3-4                                                                                                                                                                                                                                                                                       | DSP BOOT Address Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                                                                                                                                                                                                                | (DSP_BOOT_ADDRn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-5                                                                                                                                                                                                                                                                                       | LRESETNMI PIN Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i iguic 5 5                                                                                                                                                                                                                                                                                      | Enese in which in Status negister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ligure 5 5                                                                                                                                                                                                                                                                                       | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6                                                                                                                                                                                                                                                                                       | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                                                                                                                                                                                                                                                                                | (LRSTNMIPINSTAT) 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8                                                                                                                                                                                                                                                           | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7                                                                                                                                                                                                                                                                         | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8                                                                                                                                                                                                                                                           | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9                                                                                                                                                                                                                                             | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10                                                                                                                                                                                                                              | (LRSTNMIPINSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11                                                                                                                                                                                                               | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12                                                                                                                                                                                                | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84IPC Generation (IPCGRx) Registers85                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13                                                                                                                                                                                 | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86                                                                                                                                                                                                                                                                                                                                                      |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14                                                                                                                                                                  | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86IPC Generation (IPCGRH) Registers86                                                                                                                                                                                                                                                                                                                   |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15                                                                                                                                                   | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87                                                                                                                                                                                                                                                                                                                                                 |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16                                                                                                                                    | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TINPSEL)88                                                                                                                                                                                                                                                                     |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17                                                                                                                     | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TINPSEL)88Timer Output Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register                                                                                                                                                            |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-18<br>Figure 3-19                                                                                                      | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91                                                                                                                                                                                                     |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20                                                                                       | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84IPC Generation Register (NMIGRx)84IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TINPSEL)88Timer Output Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93                                                                                                                                                           |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21                                                         | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84IPC Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Generation (IPCGRH) Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93                                                                                                                          |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21<br>Figure 4-1                                           | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86IPC Generation (IPCGRH) Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93TeraNet 2A for C667296                                                                                                    |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21<br>Figure 4-1<br>Figure 4-2                             | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers85IPC Acknowledgement (IPCARx) Registers86IPC Generation (IPCGRH) Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93TeraNet 2A for C667296TeraNet 3A for C667297                                                                              |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21<br>Figure 4-1<br>Figure 4-2<br>Figure 4-3               | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93TeraNet 2A for C667297TeraNet 3P_A & B for C667299                                                                            |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21<br>Figure 4-1<br>Figure 4-2<br>Figure 4-3<br>Figure 4-4 | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84IPC Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (IDCARH)87Timer Output Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93TeraNet 2A for C667296TeraNet 3A for C667299TeraNet 6P_B and 3P_Tracer for C6672100 |
| Figure 3-6<br>Figure 3-7<br>Figure 3-8<br>Figure 3-9<br>Figure 3-10<br>Figure 3-11<br>Figure 3-12<br>Figure 3-13<br>Figure 3-14<br>Figure 3-15<br>Figure 3-16<br>Figure 3-17<br>Figure 3-18<br>Figure 3-19<br>Figure 3-20<br>Figure 3-21<br>Figure 4-1<br>Figure 4-2<br>Figure 4-3               | (LRSTNMIPINSTAT)80LRESETNMI PIN Status Clear Register(LRSTNMIPINSTAT_CLR)81Reset Status Register (RESET_STAT)82Reset Status Clear Register (RESET_STAT_CLR)82Boot Complete Register (BOOTCOMPLETE)83Power State Control Register (PWRSTATECTL)84NMI Generation Register (NMIGRx)84IPC Generation (IPCGRx) Registers86IPC Acknowledgement (IPCARx) Registers86IPC Acknowledgement Register (IPCARH)87Timer Input Selection Register (TOUTPSEL)90Reset Mux Register (RSTMUXx)90DSP Suspension Control Register91Device Speed Register (DEVSPEED)93Chip Miscellaneous Control Register93TeraNet 2A for C667297TeraNet 3P_A & B for C667299                                                                            |

| Figure 5-3       L1D Memory Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------|
| Figure 5-5         CorePac Revision ID Register (MM_REVID)<br>Address - 0181 2000h         112           Figure 7-1         Input and Output Voltage Reference Levels<br>for AC Timing Measurements.         117           Figure 7-2         Rise and Fall Transition Time Voltage<br>Reference Levels         117           Figure 7-3         Core Before IO Power Sequencing         120           Figure 7-4         IO Before Core Power Sequencing         122           Figure 7-5         SmartReflex 4-Pin VID Interface Timing         125           Figure 7-6         RESETFULL Reset Timing         135           Figure 7-7         Soft/Hard-Reset Timing         136           Figure 7-10         PLL Secondary Control Register (SECCTL)         141           Figure 7-11         PLL Controller Divider Register (SECCTL)         142           Figure 7-12         PLL Controller Clock Align Control Register<br>(DCHANGE)         143           Figure 7-13         Reset Type Status Register (SYSTAT)         143           Figure 7-17         Reset Configuration Register (RSTCFG)         144           Figure 7-18         Reset Configuration Register (RSTCFG)         145           Figure 7-20         Main PLL Control Register (RSTCFG)         144           Figure 7-21         Main PLL Control Register (MAINPLLCTL1)         144 <t< td=""><td></td><td></td></t<> |                           |                                           |
| Address - 0181 2000h       112         Figure 7-1       Input and Output Voltage Reference Levels<br>for AC Timing Measurements.       117         Figure 7-2       Rise and Fall Transition Time Voltage<br>Reference Levels       117         Figure 7-3       Core Before IO Power Sequencing       120         Figure 7-4       IO Before Core Power Sequencing       122         Figure 7-5       SmartReflex 4-Pin VID Interface Timing       135         Figure 7-6       RESETFULL Reset Timing       133         Figure 7-7       Soft/Hard-Reset Timing       133         Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Scondary Control Register (SECCTL))       141         Figure 7-11       PLL Controller Divider Register (SECTL))       142         Figure 7-12       PLL Controller Clock Align Control Register (DCHANGE)       143         Figure 7-13       Reset Type Status Register (STSTAT)       143         Figure 7-14       SYSCLK Status Register (RSTCFG)       144         Figure 7-17       Reset Control Register (RSTCFG)       145         Figure 7-18       Reset Isolation Register (RSTCFG)       145         Figure 7-19       Main PLL Control Register (MAINPLLCTL)                                                                                            |                           |                                           |
| Figure 7-1       Input and Output Voltage Reference Levels<br>for AC Timing Measurements.       117         Figure 7-2       Rise and Fall Transition Time Voltage<br>Reference Levels       117         Figure 7-3       Core Before IO Power Sequencing       120         Figure 7-4       IO Before Core Power Sequencing       122         Figure 7-5       SmartReflex 4-Pin VID Interface Timing       135         Figure 7-6       RESETFULL Reset Timing       135         Figure 7-7       Soft/Hard-Reset Timing       136         Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Secondary Control Register (PLLDIVn)       142         Figure 7-11       PLL Controller Clock Align Control Register<br>(DCHANGE)       143         Figure 7-13       PLLDIV Divider Ratio Change Status Register<br>(DCHANGE)       143         Figure 7-14       SYSCLK Status Register (SSTCTRL)       144         Figure 7-15       Reset Configuration Register (RSTCFG)       1445         Figure 7-17       Reset Control Register 0 (MAINPLLCTL)       147         Figure 7-20       Main PLL Control Register 0 (MAINPLLCTL)       147         Figure 7-21       Main PLL Control Register 0 (DDR3PLLCTL)       144                                                                                  | Figure 5-5                |                                           |
| for AC Timing Measurements.         117           Figure 7-2         Rise and Fall Transition Time Voltage<br>Reference Levels         117           Figure 7-3         Core Before IO Power Sequencing         122           Figure 7-4         IO Before Core Power Sequencing         122           Figure 7-5         SmartReflex 4-Pin VID Interface Timing         125           Figure 7-6         RESETFULL Reset Timing         135           Figure 7-7         Soft/Hard-Reset Timing         136           Figure 7-8         Boot Configuration Timing         136           Figure 7-10         PLL Secondary Control Register (PLLDIVn)         141           Figure 7-11         PLL Controller Clock Align Control Register<br>(DCHANGE)         142           Figure 7-11         PLL Controller Clock Align Control Register<br>(DCHANGE)         143           Figure 7-13         PLLDV Divider Ratio Change Status Register<br>(DCHANGE)         143           Figure 7-14         SYSCLK Status Register (RSTCFL)         144           Figure 7-15         Reset Control Register (RSTCFG)         144           Figure 7-16         Reset Control Register (RSTCFG)         145           Figure 7-20         Main PLL Control Register 0 (MAINPLLCTL0)         147           Figure 7-21         Main PLL Control Register 1 (MAINPLLCTL1)         <                               | Figure 7-1                |                                           |
| Figure 7-2       Rise and Fall Transition Time Voltage<br>Reference Levels       117         Figure 7-3       Core Before IO Power Sequencing       120         Figure 7-4       IO Before Core Power Sequencing       122         Figure 7-5       SmartReflex 4-Pin VID Interface Timing       135         Figure 7-6       RESETFULL Reset Timing       135         Figure 7-7       Soft/Hard-Reset Timing       135         Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Secondary Control Register (SECCTL))       141         Figure 7-11       PLL Controller Clock Align Control Register<br>(ALNCTL)       142         Figure 7-12       PLL Controller Clock Align Control Register<br>(ALNCTL)       143         Figure 7-13       PLSE tatus Register (SYSTAT)       143         Figure 7-14       SYSCLK Status Register (RSTCFE)       144         Figure 7-17       Reset Control Register (RSTCFG)       145         Figure 7-18       Reset Isolation Register (MAINPLLCTL)       147         Figure 7-20       Main PLL Control Register 0 (MAINPLLCTL)       147         Figure 7-21       Main PLL Control Register 0 (MAINPLLCTL)       147         Figure 7-22       Main PLL Control R                                                                                          | rigure /-1                |                                           |
| Reference Levels         117           Figure 7-3         Core Before IO Power Sequencing         120           Figure 7-4         IO Before Core Power Sequencing         122           Figure 7-5         SmartReflex 4-Pin VID Interface Timing         125           Figure 7-5         Soft/Hard-Reset Timing         135           Figure 7-7         Soft/Hard-Reset Timing         133           Figure 7-8         Boot Configuration Timing         133           Figure 7-9         Main PLL and PLL Controller         137           Figure 7-10         PLL Secondary Control Register (SECCTL))         141           Figure 7-11         PLL Controller Clock Align Control Register (MLDIVN)         142           Figure 7-12         PLL Controller Clock Align Control Register (CCTL)         143           Figure 7-13         PLLDIV Divider Ratio Change Status Register (DCHANGE)         143           Figure 7-16         Reset Control Register (RSTCFG)         144           Figure 7-17         Reset Control Register (RSTCFG)         145           Figure 7-20         Main PLL Control Register 0 (MAINPLLCTL0)         147           Figure 7-21         Main PLL Control Register 0 (MAINPLLCTL0)         147           Figure 7-22         Main PLL Control Register 0 (DDR3PLLCTL0)         147      <                                                                 | Figure 7-2                |                                           |
| Figure 7-4       IO Before Core Power Sequencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                         |                                           |
| Figure 7-5       SmartReflex 4-Pin VID Interface Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure 7-3                | Core Before IO Power Sequencing           |
| Figure 7-6       RESETFULL Reset Timing       135         Figure 7-7       Soft/Hard-Reset Timing       135         Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Secondary Control Register (SECCTL))       141         Figure 7-11       PLL Controller Divider Register (PLDIVN)       142         Figure 7-13       PLLDIV Divider Ratio Change Status Register       142         Figure 7-13       PLLDIV Divider Ratio Change Status Register       142         Figure 7-14       SYSCLK Status Register (SYSTAT)       143         Figure 7-15       Reset Type Status Register (RSTCPE)       144         Figure 7-16       Reset Control Register (RSTCTCL)       145         Figure 7-17       Reset Configuration Register (RSTCFG)       145         Figure 7-18       Reset Isolation Register (RSICO)       146         Figure 7-20       Main PLL Control Register 0 (MAINPLLCTL0)       147         Figure 7-21       Main PLL Control Register 1 (MAINPLLCTL1)       147         Figure 7-22       Main PLL Control Register 0 (DDR3PLLCTL0)       150         Figure 7-23       DDR3 PLL Control Register 0 (DDR3PLLCTL0)       150         Figure 7-24       DDR3 PLL Control Regis                                                                                                   | Figure 7-4                | IO Before Core Power Sequencing122        |
| Figure 7-7       Soft/Hard-Reset Timing       135         Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Secondary Control Register (SECCTL)       141         Figure 7-11       PLL Controller Divider Register (PLDIVN)       142         Figure 7-12       PLL Controller Clock Align Control Register<br>(ALNCTL)       142         Figure 7-13       PLLDIV Divider Ratio Change Status Register<br>(DCHANGE)       143         Figure 7-15       Reset Type Status Register (SYSTAT)       143         Figure 7-16       Reset Control Register (RSTCTRL)       144         Figure 7-17       Reset Control Register (RSTCFG)       144         Figure 7-18       Reset Isolation Register (RSISO)       146         Figure 7-20       Main PLL Control Register 0 (MAINPLLCTL0)       147         Figure 7-21       Main PLL Control Register 1 (MAINPLLCTL1)       147         Figure 7-22       Main PLL Control Register 1 (MAINPLLCTL1)       149         Figure 7-23       DDR3 PLL Block Diagram       150         Figure 7-24       DDR3 PLL Control Register 0 (DDR3PLLCTL0)       150         Figure 7-25       DDR3 PLL Control Register 0 (PASSPLLCTL0)       153         Figure 7-26 <td< td=""><td>Figure 7-5</td><td>SmartReflex 4-Pin VID Interface Timing125</td></td<>            | Figure 7-5                | SmartReflex 4-Pin VID Interface Timing125 |
| Figure 7-8       Boot Configuration Timing       136         Figure 7-9       Main PLL and PLL Controller       137         Figure 7-10       PLL Secondary Control Register (SECCTL)       141         Figure 7-11       PLL Controller Divider Register (PLDIVn)       142         Figure 7-12       PLL Controller Clock Align Control Register (ALNCTL)       142         Figure 7-13       PLLDIV Divider Ratio Change Status Register (DCHANGE)       143         Figure 7-14       SYSCLK Status Register (SYSTAT)       143         Figure 7-15       Reset Type Status Register (RSTCTRL)       144         Figure 7-17       Reset Control Register (RSTCFG)       144         Figure 7-18       Reset Isolation Register (RSISO)       146         Figure 7-19       Main PLL Control Register 0 (MAINPLLCTL0)       147         Figure 7-20       Main PLL Control Register 1 (MAINPLLCTL1)       147         Figure 7-21       Main PLL Control Register 0 (DDR3PLLCTL0)       149         Figure 7-22       DDR3 PLL Block Diagram       150         Figure 7-23       DDR3 PLL Block Diagram       150         Figure 7-24       DDR3 PLL Control Register 0 (PDASPLLCTL0)       153         Figure 7-25       DDR3 PLL Control Register 1 (DDR3PLLCTL1)       154         Figure 7-30 <t< td=""><td>Figure 7-6</td><td>RESETFULL Reset Timing135</td></t<>                                   | Figure 7-6                | RESETFULL Reset Timing135                 |
| Figure 7-9Main PLL and PLL Controller137Figure 7-10PLL Secondary Control Register (SECCTL))141Figure 7-11PLL Controller Divider Register (PLLDIVn)142Figure 7-12PLL Controller Clock Align Control Register<br>(DCHANGE)143Figure 7-13PLLDIV Divider Ratio Change Status Register<br>(DCHANGE)143Figure 7-14SYSCLK Status Register (SYSTAT)143Figure 7-15Reset Type Status Register (RSTYPE)144Figure 7-16Reset Control Register (RSTCTRL)145Figure 7-17Reset Configuration Register (RSTCFG)145Figure 7-18Reset Isolation Register (RSISO)146Figure 7-19Main PLL Control Register 0 (MAINPLLCTL0).147Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1).147Figure 7-21Main PLL Control Register 0 (DDR3PLLCTL0).149Figure 7-22DDR3 PLL Block Diagram.150Figure 7-23DDR3 PLL Block Diagram.150Figure 7-24DDR3 PLL Control Register 0 (DDR3PLLCTL1).151Figure 7-25DDR3 PLL Control Register 0 (PASSPLLCTL0).153Figure 7-26DDR3 PLL Control Register 1 (DDR3PLLCTL1).151Figure 7-27PASS PLL Control Register 0 (PASSPLLCTL0).153Figure 7-28PASS PLL Control Register 1 (PASSPLLCTL1).154Figure 7-30PASS PLL Control Register 1 (PASSPLLCTL1).154Figure 7-31TMS320C6672 System Event Inputs.63Figure 7-33NMI and Local Reset Timing.163Figure 7-3                                                                                                                                                             | Figure 7-7                | -                                         |
| Figure 7-10PLL Secondary Control Register (SECCTL))141Figure 7-11PLL Controller Divider Register (PLLDIVN)142Figure 7-12PLL Controller Clock Align Control Register<br>(ALNCTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 7-8                | Boot Configuration Timing136              |
| Figure 7-11PLL Controller Divider Register (PLLDIVn)142Figure 7-12PLL Controller Clock Align Control Register<br>(ALNCTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                           |
| Figure 7-12       PLL Controller Clock Align Control Register<br>(ALNCTL)       142         Figure 7-13       PLLDIV Divider Ratio Change Status Register<br>(DCHANGE)       143         Figure 7-14       SYSCLK Status Register (SYSTAT)       143         Figure 7-15       Reset Type Status Register (RSTVPE)       144         Figure 7-16       Reset Control Register (RSTCTRL)       145         Figure 7-17       Reset Configuration Register (RSTCFG)       145         Figure 7-18       Reset Isolation Register 0 (MAINPLLCTL0)       147         Figure 7-19       Main PLL Control Register 0 (MAINPLLCTL0)       147         Figure 7-20       Main PLL Control Register 1 (MAINPLLCTL1)       147         Figure 7-21       Main PLL Colck Input Transition Time       149         Figure 7-22       Main PLL Clock Input Transition Time       149         Figure 7-23       DDR3 PLL Block Diagram       150         Figure 7-24       DDR3 PLL Control Register 0 (DDR3PLLCTL0)       150         Figure 7-25       DDR3 PLL Control Register 1 (DDR3PLLCTL1)       151         Figure 7-26       DDR3 PLL Control Register 1 (DDR3PLLCTL1)       152         Figure 7-27       PASS PLL Control Register 1 (PASSPLLCTL0)       153         Figure 7-30       PASS PLL Control Register 1 (PASSPLLCTL0)       153 </td <td>-</td> <td></td>                                            | -                         |                                           |
| (ALNCTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                         | -                                         |
| Figure 7-13PLLDIV Divider Ratio Change Status Register<br>(DCHANGE)143Figure 7-14SYSCLK Status Register (SYSTAT)143Figure 7-15Reset Type Status Register (RSTYPE)144Figure 7-16Reset Control Register (RSTCTRL)145Figure 7-17Reset Configuration Register (RSTCFG)145Figure 7-18Reset Isolation Register (RSISO)146Figure 7-19Main PLL Control Register 0 (MAINPLLCTL0).147Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1).147Figure 7-21Main PLL Controller/SRIO/HyperLink/PCle<br>Clock Input Timing.149Figure 7-22DDR3 PLL Block Diagram.150Figure 7-23DDR3 PLL Control Register 0 (DDR3PLLCTL0).150Figure 7-24DDR3 PLL Control Register 1 (DDR3PLLCTL1).151Figure 7-25DDR3 PLL DDRCLK Timing.152Figure 7-26DDR3 PLL Control Register 1 (PASSPLLCTL0).153Figure 7-27PASS PLL Control Register 1 (PASSPLLCTL1).153Figure 7-30PASS PLL Control Register 1 (PASSPLLCTL1).154Figure 7-31TMS320C6672 Interrupt Topology.163Figure 7-33NMI and Local Reset Timing.183Figure 7-34HOUT Timing.183Figure 7-35Configuration Register (CONFIG).191Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPFAR).192Figure 7-37Programmable Range n Ind Address<br>Register (PROGn_MPEAR).192Figure 7-39I <sup>2</sup> C Module Block Diagram.200Fi                                                                                                                                                    | Figure 7-12               | 5 5                                       |
| (DCHANGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>F</b> imme <b>7</b> 12 |                                           |
| Figure 7-14       SYSCLK Status Register (SYSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 7-13               |                                           |
| Figure 7-15       Reset Type Status Register (RSTYPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure 7-14               |                                           |
| Figure 7-16Reset Control Register (RSTCTRL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                         | -                                         |
| Figure 7-17Reset Configuration Register (RSTCFG)145Figure 7-18Reset Isolation Register (RSISO)146Figure 7-19Main PLL Control Register 0 (MAINPLLCTL0)147Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1)147Figure 7-21Main PLL Controller/SRIO/HyperLink/PCleClock Input Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                         |                                           |
| Figure 7-18Reset Isolation Register (RSISO)146Figure 7-19Main PLL Control Register 0 (MAINPLLCTL0)147Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1)147Figure 7-21Main PLL Controller/SRIO/HyperLink/PCleClock Input Timing149Figure 7-22Main PLL Clock Input Transition Time149Figure 7-23DDR3 PLL Block Diagram150Figure 7-24DDR3 PLL Control Register 0 (DDR3PLLCTL0)150Figure 7-25DDR3 PLL Control Register 1 (DDR3PLLCTL1)151Figure 7-26DDR3 PLL DDRCLK Timing152Figure 7-27PASS PLL Block Diagram153Figure 7-28PASS PLL Control Register 0 (PASSPLLCTL0)153Figure 7-29PASS PLL Control Register 1 (PASSPLLCTL1)154Figure 7-30PASS PLL Timing155Figure 7-31TMS320C6672 System Event Inputs —<br>C66x CorePac Primary Interrupts163Figure 7-33NMI and Local Reset Timing183Figure 7-34HOUT Timing183Figure 7-35Configuration Register (CONFIG)191Figure 7-37Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-38Programmable Range n End Address<br>Register (PROGn_MPEAR)193Figure 7-39I <sup>2</sup> C Module Block Diagram200Figure 7-40I <sup>2</sup> C Receive Timings200Figure 7-40I <sup>2</sup> C Receive Timings200                                                                                                                                                                                                                                                  |                           | -                                         |
| Figure 7-19Main PLL Control Register 0 (MAINPLLCTL0)147Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1)147Figure 7-21Main PLL Controller/SRIO/HyperLink/PCleClock Input Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                                           |
| Figure 7-20Main PLL Control Register 1 (MAINPLLCTL1)147Figure 7-21Main PLL Controller/SRIO/HyperLink/PCle<br>Clock Input Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | -                                         |
| Figure 7-21Main PLL Controller/SRIO/HyperLink/PCIe<br>Clock Input Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | -                                         |
| Figure 7-22Main PLL Clock Input Transition Time149Figure 7-23DDR3 PLL Block Diagram150Figure 7-24DDR3 PLL Control Register 0 (DDR3PLLCTL0)150Figure 7-25DDR3 PLL Control Register 1 (DDR3PLLCTL1)151Figure 7-26DDR3 PLL DDRCLK Timing152Figure 7-27PASS PLL Block Diagram153Figure 7-28PASS PLL Control Register 0 (PASSPLLCTL0)153Figure 7-29PASS PLL Control Register 1 (PASSPLLCTL1)154Figure 7-30PASS PLL Control Register 1 (PASSPLLCTL1)155Figure 7-31TMS320C6672 Interrupt Topology163Figure 7-32TMS320C6672 System Event Inputs163Figure 7-33NMI and Local Reset Timing183Figure 7-34HOUT Timing183Figure 7-35Configuration Register (CONFIG)191Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)192Figure 7-39I²C Module Block Diagram200Figure 7-40I²C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Figure 7-21               | -                                         |
| Figure 7-23       DDR3 PLL Block Diagram       150         Figure 7-24       DDR3 PLL Control Register 0 (DDR3PLLCTL0)150         Figure 7-25       DDR3 PLL Control Register 1 (DDR3PLLCTL1)151         Figure 7-26       DDR3 PLL DDRCLK Timing.         Figure 7-27       PASS PLL Block Diagram         Figure 7-28       PASS PLL Control Register 0 (PASSPLLCTL0)153         Figure 7-29       PASS PLL Control Register 0 (PASSPLLCTL0)154         Figure 7-30       PASS PLL Control Register 1 (PASSPLLCTL1)154         Figure 7-31       TMS320C6672 Interrupt Topology         Figure 7-32       TMS320C6672 System Event Inputs —         C66x CorePac Primary Interrupts       163         Figure 7-34       HOUT Timing         Figure 7-35       Configuration Register (CONFIG)         Figure 7-36       Programmable Range n Start Address         Register (PROGn_MPSAR)       192         Figure 7-38       Programmable Range n End Address         Register (PROGn_MPEAR)       193         Figure 7-39       I <sup>2</sup> C Module Block Diagram         Figure 7-39       I <sup>2</sup> C Module Block Diagram                                                                                                                                                                                                                                                                    |                           | Clock Input Timing149                     |
| Figure 7-24       DDR3 PLL Control Register 0 (DDR3PLLCTL0)150         Figure 7-25       DDR3 PLL Control Register 1 (DDR3PLLCTL1)151         Figure 7-26       DDR3 PLL DDRCLK Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 7-22               | Main PLL Clock Input Transition Time149   |
| Figure 7-25       DDR3 PLL Control Register 1 (DDR3PLLCTL1)151         Figure 7-26       DDR3 PLL DDRCLK Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 7-23               |                                           |
| Figure 7-26       DDR3 PLL DDRCLK Timing.       152         Figure 7-27       PASS PLL Block Diagram       153         Figure 7-28       PASS PLL Control Register 0 (PASSPLLCTL0)153         Figure 7-29       PASS PLL Control Register 1 (PASSPLLCTL1)154         Figure 7-30       PASS PLL Timing         PASS PLL Control Register 1 (PASSPLLCTL1)154         Figure 7-30       PASS PLL Timing         Figure 7-31       TMS320C6672 Interrupt Topology         TMS320C6672 System Event Inputs       -         C66x CorePac Primary Interrupts       163         Figure 7-33       NMI and Local Reset Timing         Figure 7-34       HOUT Timing         HOUT Timing       183         Figure 7-35       Configuration Register (CONFIG)         Figure 7-36       Programmable Range n Start Address         Register (PROGn_MPSAR)       192         Figure 7-37       Programmable Range n End Address         Register (PROGn_MPEAR)       192         Figure 7-38       Programmable Range n Memory Protection         Page Attribute Register (PROGn_MPPA)       193         Figure 7-39       I <sup>2</sup> C Module Block Diagram       200         Figure 7-40       I <sup>2</sup> C Receive Timings       202                                                                                                                                                                         | -                         |                                           |
| Figure 7-27       PASS PLL Block Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                         | -                                         |
| Figure 7-28PASS PLL Control Register 0 (PASSPLLCTL0)153Figure 7-29PASS PLL Control Register 1 (PASSPLLCTL1)154Figure 7-30PASS PLL Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                         |                                           |
| Figure 7-29PASS PLL Control Register 1 (PASSPLLCTL1)154Figure 7-30PASS PLL Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                         | -                                         |
| Figure 7-30PASS PLL Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                         | 5                                         |
| Figure 7-31TMS320C6672 Interrupt Topology163Figure 7-32TMS320C6672 System Event Inputs266x CorePac Primary Interrupts163Figure 7-33NMI and Local Reset Timing183Figure 7-34HOUT Timing183Figure 7-35Configuration Register (CONFIG)191Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)192Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)193Figure 7-39I <sup>2</sup> C Module Block Diagram.200Figure 7-40I <sup>2</sup> C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | -                                         |
| Figure 7-32TMS320C6672 System Event Inputs —<br>C66x CorePac Primary InterruptsFigure 7-33NMI and Local Reset TimingFigure 7-34HOUT TimingFigure 7-35Configuration Register (CONFIG)Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)Figure 7-39I²C Module Block Diagram.200Figure 7-40I²C Receive Timings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                         |                                           |
| C66x CorePac Primary InterruptsFigure 7-33NMI and Local Reset TimingFigure 7-34HOUT TimingFigure 7-35Configuration Register (CONFIG)Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)Figure 7-39I <sup>2</sup> C Module Block Diagram.200Figure 7-40I <sup>2</sup> C Receive Timings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                           |
| Figure 7-33NMI and Local Reset Timing183Figure 7-34HOUT Timing183Figure 7-35Configuration Register (CONFIG)191Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)192Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)193Figure 7-39I <sup>2</sup> C Module Block Diagram200Figure 7-40I <sup>2</sup> C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 7-32               | · ·                                       |
| Figure 7-34HOUT Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 7-33               |                                           |
| Figure 7-35Configuration Register (CONFIG)191Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)192Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)193Figure 7-39I²C Module Block Diagram.200Figure 7-40I²C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                         | _                                         |
| Figure 7-36Programmable Range n Start Address<br>Register (PROGn_MPSAR)192Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)192Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)193Figure 7-39I²C Module Block Diagram.200Figure 7-40I²C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         |                                           |
| Register (PROGn_MPSAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                         |                                           |
| Figure 7-37Programmable Range n End Address<br>Register (PROGn_MPEAR)Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)Figure 7-39I²C Module Block Diagram.Figure 7-40I²C Receive Timings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                           |
| Register (PROGn_MPEAR)192Figure 7-38Programmable Range n Memory Protection<br>Page Attribute Register (PROGn_MPPA)193Figure 7-39I²C Module Block Diagram200Figure 7-40I²C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure 7-37               | •                                         |
| Page Attribute Register (PROGn_MPPA)193Figure 7-39I²C Module Block Diagram.200Figure 7-40I²C Receive Timings202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |                                           |
| Figure 7-39I <sup>2</sup> C Module Block Diagram200Figure 7-40I <sup>2</sup> C Receive Timings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 7-38               |                                           |
| Figure 7-40    I <sup>2</sup> C Receive Timings    202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |                                           |
| Figure 7-41         FC Transmit Timings         203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                         |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 7-41               | I'C Iransmit Timings                      |

### TMS320C6672

SPRS708E—November 2010—Revised March 2014



| Figure 7-42 | SPI Master Mode Timing Diagrams —<br>Base Timings for 3 Pin Mode |
|-------------|------------------------------------------------------------------|
| Figure 7-43 | SPI Additional Timings for 4 Pin Master                          |
| -           | Mode with Chip Select Option                                     |
| Figure 7-44 | HyperLink Station Management                                     |
|             | Clock Timing 210                                                 |
| Figure 7-45 | HyperLink Station Management                                     |
|             | Transmit Timing 210                                              |
| Figure 7-46 | HyperLink Station Management                                     |
|             | Receive Timing                                                   |
| Figure 7-47 | UART Receive Timing Waveform                                     |
| Figure 7-48 | UART CTS (Clear-to-Send Input) —                                 |
|             | Autoflow Timing Waveform                                         |
| Figure 7-49 | UART Transmit Timing Waveform                                    |
| Figure 7-50 | UART RTS (Request-to-Send Output) —                              |
|             | Autoflow Timing Waveform                                         |
| Figure 7-51 | TSIP 2x Timing Diagram <sup>(1)</sup>                            |

| Figure 7-52 | TSIP 1x Timing Diagram <sup>(1)</sup> 214 |
|-------------|-------------------------------------------|
| Figure 7-53 | EMIF16 Asynchronous Memory                |
|             | Read Timing Diagram216                    |
| Figure 7-54 | EMIF16 Asynchronous Memory                |
|             | Write Timing Diagram216                   |
| Figure 7-55 | EMIF16 EM_WAIT Read Timing Diagram217     |
| Figure 7-56 | EMIF16 EM_WAIT Write Timing Diagram 217   |
| Figure 7-57 | MACID1 Register218                        |
| Figure 7-58 | MACID2 Register218                        |
| Figure 7-59 | CPTS_RFTCLK_SEL Register                  |
| Figure 7-60 | MDIO Input Timing220                      |
| Figure 7-61 | MDIO Output Timing220                     |
| Figure 7-62 | Timer Timing222                           |
| Figure 7-63 | GPIO Timing                               |
| Figure 7-64 | Trace Timing225                           |
| Figure 7-65 | JTAG Test-Port Timing227                  |



## **List of Tables**

| Table 2-1  | Device Characteristics 13                                                         |
|------------|-----------------------------------------------------------------------------------|
| Table 2-2  | Memory Map Summary 17                                                             |
| Table 2-3  | Bootloader section in L2 SRAM                                                     |
| Table 2-4  | Boot Mode Pins: Boot Device Values 25                                             |
| Table 2-5  | Extended Boot Modes 25                                                            |
| Table 2-6  | No Boot / EMIF16 Configuration                                                    |
|            | Field Descriptions                                                                |
| Table 2-7  | Serial Rapid I/O Configuration                                                    |
|            | Field Descriptions                                                                |
| Table 2-8  | Ethernet (SGMII) Configuration                                                    |
| T-1-1-2-0  | Field Descriptions                                                                |
| Table 2-9  | PCI Device Configuration Field Descriptions 27                                    |
| Table 2-10 | BAR Config / PCIe Window Sizes                                                    |
| Table 2-11 | I <sup>2</sup> C Master Mode Device Configuration<br>Field Descriptions           |
| Table 2-12 | I <sup>2</sup> C Passive Mode Device Configuration                                |
|            | Field Descriptions                                                                |
| Table 2-13 | SPI Device Configuration Field Descriptions 29                                    |
| Table 2-14 | HyperLink Boot Device Configuration                                               |
|            | Field Descriptions                                                                |
| Table 2-15 | Boot Parameter Table Common Parameters 31                                         |
| Table 2-16 | EMIF16 Boot Mode Parameter Table                                                  |
| Table 2-17 | SRIO Boot Mode Parameter Table                                                    |
| Table 2-18 | Ethernet Boot Mode Parameter Table                                                |
| Table 2-19 | PCIe Boot Mode Parameter Table                                                    |
| Table 2-20 | I <sup>2</sup> C Boot Mode Parameter Table                                        |
| Table 2-21 | SPI Boot Mode Parameter Table                                                     |
| Table 2-22 | HyperLink Boot Mode Parameter Table                                               |
| Table 2-23 | DDR3 Boot Parameter Table                                                         |
| Table 2-24 | C66x DSP System PLL Configuration                                                 |
| Table 2-25 | I/O Functional Symbol Definitions                                                 |
| Table 2-26 | Terminal Functions — Signals and                                                  |
|            | Control by Function 44                                                            |
| Table 2-27 | Terminal Functions — Power and Ground 57                                          |
| Table 2-28 | Terminal Functions — By Signal Name 58                                            |
| Table 2-29 | Terminal Functions — By Ball Number 63                                            |
| Table 3-1  | TMS320C6672 Device Configuration Pins 73                                          |
| Table 3-2  | Device State Control Registers 74                                                 |
| Table 3-3  | Device Status Register Field Descriptions 78                                      |
| Table 3-4  | Device Configuration Register (DEVCFG)                                            |
|            | Field Descriptions 79                                                             |
| Table 3-5  | JTAG ID Register (JTAGID) Field Descriptions 79                                   |
| Table 3-6  | DSP BOOT Address Register                                                         |
|            | (DSP_BOOT_ADDRn) Field Descriptions 80                                            |
| Table 3-7  | LRESETNMI PIN Status Register                                                     |
|            | (LRSTNMIPINSTAT) Field Descriptions                                               |
| Table 3-8  | LRESETNMI PIN Status Clear Register<br>(LRSTNMIPINSTAT_CLR) Field Descriptions 81 |
| Table 2.0  | •                                                                                 |
| Table 3-9  | Reset Status Register (RESET_STAT) FieldDescriptions82                            |
| Table 3-10 | Reset Status Clear Register (RESET_STAT_CLR)                                      |
|            | Field Descriptions                                                                |
| Table 3-11 | Boot Complete Register (BOOTCOMPLETE)                                             |
|            | Field Descriptions                                                                |
|            |                                                                                   |

| Table 3-12 | Power State Control Register (PWRSTATECTL)<br>Field Descriptions       |
|------------|------------------------------------------------------------------------|
| Table 3-13 | NMI Generation Register (NMIGRx)                                       |
|            | Field Descriptions                                                     |
| Table 3-14 | IPC Generation Registers (IPCGRx)                                      |
|            | Field Descriptions85                                                   |
| Table 3-15 | IPC Acknowledgement Registers (IPCARx)<br>Field Descriptions           |
| Table 3-16 | IPC Generation Registers (IPCGRH)                                      |
|            | Field Descriptions                                                     |
| Table 3-17 | IPC Acknowledgement Register (IPCARH)                                  |
|            | Field Descriptions                                                     |
| Table 3-18 | Timer Input Selection Field Description                                |
|            | (TINPSEL)                                                              |
| Table 3-19 | Timer Output Selection Register (TOUTPSEL)                             |
|            | Field Description                                                      |
| Table 3-20 | Reset Mux Register (RSTMUXx)                                           |
| Table 2 21 | Field Descriptions                                                     |
| Table 3-21 | DSP Suspension Control Register<br>(DSP_SUSP_CTL) Field Descriptions92 |
| Table 3-22 | Device Speed Register (DEVSPEED)                                       |
|            | Field Descriptions                                                     |
| Table 3-23 | Chip Miscellaneous Control Register                                    |
|            | (CHIP_MISC_CTL) Field Descriptions                                     |
| Table 4-1  | Data Switch Fabric Connection Matrix                                   |
| Table 4-2  | Configuration Switch Fabric Connection                                 |
|            | Matrix Section1101                                                     |
| Table 4-3  | Configuration Switch Fabric Connection<br>Matrix Section2102           |
| Table 5-1  | Available Memory Page Protection Schemes110                            |
| Table 5-2  | CorePac Revision ID Register (MM_REVID)                                |
|            | Field Descriptions112                                                  |
| Table 6-1  | Absolute Maximum Ratings113                                            |
| Table 6-2  | Recommended Operating Conditions114                                    |
| Table 6-3  | Electrical Characteristics115                                          |
| Table 6-4  | Power Supply to Peripheral I/O Mapping116                              |
| Table 7-1  | Power Supply Rails on the TMS320C6672118                               |
| Table 7-2  | Core Before IO Power Sequencing                                        |
| Table 7-3  | IO Before Core Power Sequencing                                        |
| Table 7-4  | Clock Sequencing124                                                    |
| Table 7-5  | SmartReflex 4-Pin VID Interface Switching<br>Characteristics           |
| Table 7-6  | Power Domains                                                          |
| Table 7-7  | Clock Domains127                                                       |
| Table 7-8  | PSC Register Memory Map128                                             |
| Table 7-9  | Reset Types130                                                         |
| Table 7-10 | Reset Timing Requirements135                                           |
| Table 7-11 | Reset Switching Characteristics Over                                   |
|            | Recommended Operating Conditions135                                    |
| Table 7-12 | Boot Configuration Timing Requirements136                              |
| Table 7-13 | Main PLL Stabilization, Lock, and Reset Times 139                      |
| Table 7-14 | PLL Controller Registers (Including<br>Reset Controller)140            |

### TMS320C6672

SPRS708E—November 2010—Revised March 2014



| Table 7-15               | PLL Secondary Control Register (SECCTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Field Descriptions 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-16               | PLL Controller Divider Register (PLLDIVn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T     7 47               | Field Descriptions 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-17               | PLL Controller Clock Align Control Register<br>(ALNCTL) Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 7-18               | PLLDIV Divider Ratio Change Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | (DCHANGE) Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 7-19               | SYSCLK Status Register (SYSTAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 7-20               | Reset Type Status Register (RSTYPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 7-21               | Reset Control Register (RSTCTRL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | Field Descriptions 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-22               | Reset Configuration Register (RSTCFG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | Field Descriptions 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-23               | Reset Isolation Register (RSISO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | Field Descriptions146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 7-24               | Main PLL Control Register 0 (MAINPLLCTL0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | Field Descriptions 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-25               | Main PLL Control Register 1 (MAINPLLCTL1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>T                </b> | Field Descriptions 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-26               | Main PLL Controller/SRIO/HyperLink/PCIe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tabla 7 27               | Clock Input Timing Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 7-27               | DDR3 PLL Control Register 0 Field Descriptions150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 7-28               | DDR3 PLL Control Register 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 7-29               | DDR3 PLL DDRSYSCLK1(N P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | Timing Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 7-30               | PASS PLL Control Register 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Field Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 7-31               | PASS PLL Control Register 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Field Descriptions 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-32               | PASS PLL Timing Requirements 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 7-33               | EDMA3 Channel Controller Configuration 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 7-34               | EDMA3 Transfer Controller Configuration 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 7-35               | EDMA3CC0 Events for C6672 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-36               | EDMA3CC1 Events for C6672 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-37               | EDMA3CC2 Events for C6672 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-38               | CIC0 Event Inputs (Secondary Interrupts for C66x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | CorePacs) 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-39               | CIC2 Event Inputs (Secondary Events for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | EDMA3CC1 and EDMA3CC2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 7-40               | CIC3 Event Inputs (Secondary Events for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T-1-1- 7 41              | EDMA3CC0 and HyperLink)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 7-41               | CICO Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-42               | CIC2 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-43               | CIC3 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 7-44               | IPC Generation Registers (IPCGRx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 7-45               | Interview         Interview <t< td=""></t<> |
| Table 7-46               | NMI and Local Reset Timing Requirements 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 7-47               | HOUT Switching Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 7-48               | MPU Default Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 7-49               | MPU Memory Regions 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Table 7-50               | Privilege ID Settings184                                                                             |
|--------------------------|------------------------------------------------------------------------------------------------------|
| Table 7-51               | Master ID Settings                                                                                   |
| Table 7-52               | MPU0 Registers                                                                                       |
| Table 7-53               | MPU1 Registers                                                                                       |
| Table 7-54               | MPU2 Registers                                                                                       |
| Table 7-55               | MPU3 Registers190                                                                                    |
| Table 7-56               | Configuration Register (CONFIG)                                                                      |
|                          | Field Descriptions191                                                                                |
| Table 7-57               | Programmable Range n Start Address Register<br>(PROGn_MPSAR) Field Descriptions                      |
| Table 7-58               | Programmable Range n End Address Register<br>(PROGn_MPEAR) Field Descriptions                        |
| Table 7-59               | Programmable Range n Memory Protection Page<br>Attribute Register (PROGn_MPPA) Field<br>Descriptions |
| Table 7-60               | Programmable Range n Registers Reset Values for MPU0195                                              |
| Table 7-61               | Programmable Range n Registers<br>Reset Values for MPU1195                                           |
| Table 7-62               | Programmable Range n Registers<br>Reset Values for MPU2196                                           |
| Table 7-63               | Programmable Range n Registers                                                                       |
|                          | Reset Values for MPU3196                                                                             |
| Table 7-64               | I <sup>2</sup> C Registers                                                                           |
| Table 7-65               | I <sup>2</sup> C Timing Requirements                                                                 |
| Table 7-66               | I <sup>2</sup> C Switching Characteristics                                                           |
| Table 7-67               | SPI Timing Requirements204                                                                           |
| Table 7-68               | SPI Switching Characteristics                                                                        |
| Table 7-69               | HyperLink Events for C6672207                                                                        |
| Table 7-70               | HyperLink Peripheral Timing Requirements 209                                                         |
| Table 7-71               | HyperLink Peripheral Switching<br>Characteristics                                                    |
| Table 7-72               | UART Timing Requirements                                                                             |
| Table 7-73               | UART Switching Characteristics                                                                       |
| Table 7-74               | Timing Requirements for TSIP 2x Mode213                                                              |
| Table 7-75               | Timing Requirements for TSIP 1x Mode214                                                              |
| Table 7-76               | EMIF16 Asynchronous Memory Timing                                                                    |
|                          | Requirements                                                                                         |
| Table 7-77               | MACID1 Register Field Descriptions                                                                   |
| Table 7-78               | MACID2 Register Field Descriptions                                                                   |
| Table 7-79               | CPTS_RFTCLK_SEL Register                                                                             |
| Table 7.00               | Field Descriptions                                                                                   |
| Table 7-80<br>Table 7-81 | MDIO Timing Requirements                                                                             |
| Table 7-81<br>Table 7-82 | MDIO Switching Characteristics                                                                       |
| Table 7-82<br>Table 7-83 | Timer Input Timing Requirements                                                                      |
| Table 7-83               | GPIO Input Timing Requirements                                                                       |
| Table 7-85               | GPIO Output Switching Characteristics                                                                |
| Table 7-85               | DSP Trace Switching Characteristics                                                                  |
| Table 7-80               | STM Trace Switching Characteristics                                                                  |
| Table 7-88               | JTAG Test Port Timing Requirements                                                                   |
| Table 7-89               | JTAG Test Port Switching Characteristics226                                                          |
| Table 9-1                | Thermal Resistance Characteristics for                                                               |
|                          | CYP (PBGA 841-Pin Package)                                                                           |

### 2 Device Overview

### 2.1 Device Characteristics

Table 2-1 shows the significant features of the device.

#### Table 2-1 Device Characteristics

|                               | Features                                                                               | TMS320C6672                                                  |
|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                               | DDR3 Memory Controller (64-bit bus width) [1.5 V I/O]<br>(clock source = DDRREFCLKN P) | 1                                                            |
| Peripherals                   | EDMA3 (16 independent channels) [DSP/2 clock rate]                                     | 1                                                            |
|                               | EDMA3 (64 independent channels) [DSP/3 clock rate]                                     | 2                                                            |
|                               | High-speed 1×/2×/4× Serial RapidIO Port (4 lanes)                                      | 1                                                            |
|                               | PCIe (2 lanes)                                                                         | 1                                                            |
|                               | 10/100/1000 Ethernet                                                                   | 2                                                            |
|                               | Management Data Input/Output (MDIO)                                                    | 1                                                            |
|                               | HyperLink                                                                              | 1                                                            |
|                               | EMIF16                                                                                 | 1                                                            |
|                               | TSIP                                                                                   | 2                                                            |
|                               | SPI                                                                                    | 1                                                            |
|                               | UART                                                                                   | 1                                                            |
|                               | I <sup>2</sup> C                                                                       | 1                                                            |
|                               | 64-Bit Timers (configurable) (internal clock source = CPU/6 clock frequency)           | Ten 64-bit (each configurable as two32-bit timers)           |
|                               | General-Purpose Input/Output Port (GPIO)                                               | 16                                                           |
|                               | Packet Accelerator                                                                     | 1                                                            |
| Accelerators                  | Security Accelerator <sup>(1)</sup>                                                    | 1                                                            |
|                               | Size (Bytes)                                                                           | 5376KB                                                       |
|                               |                                                                                        | 64KB L1 Program Memory [SRAM/Cache]                          |
| On Chin Manan                 |                                                                                        | 64KB L1 Data Memory [SRAM/Cache]                             |
| On-Chip Memory                | Organization                                                                           | 1024KB L2 Unified Memory/Cache                               |
|                               |                                                                                        | 4096KB MSM SRAM                                              |
|                               |                                                                                        | 128KB L3 ROM                                                 |
| C66x CorePac Rev ID           | CorePac Revision ID Register (address location: 0181 2000h)                            | See Section 5.5 "C66x CorePac Revision".                     |
| JTAG BSDL_ID                  | JTAGID register (address location: 0262 0018h)                                         | See Section 3.3.3 "JTAG ID Register (JTAGID)<br>Description" |
|                               |                                                                                        | 1500 (1.5 GHz)                                               |
| Frequency                     | MHz                                                                                    | 1250 (1.25 GHz)                                              |
|                               |                                                                                        | 1000 (1.0 GHz)                                               |
|                               |                                                                                        | 0.67 ns (1.5 GHz)                                            |
| Cycle Time                    | ns                                                                                     | 0.8 ns (1.25 GHz)                                            |
|                               |                                                                                        | 1 ns (1.0 GHz)                                               |
| Malta aa                      | Core (V)                                                                               | SmartReflex variable supply                                  |
| Voltage                       | I/O (V)                                                                                | 1.0 V, 1.5 V, and 1.8 V                                      |
| Process Technology            | μm                                                                                     | 0.040 μm                                                     |
| BGA Package                   | 24 mm $	imes$ 24 mm lead-free die bump and solder ball package                         | CYP 841-Pin (lead-free)                                      |
| Product Status <sup>(2)</sup> | Product Preview (PP), Advance Information (AI), or Production Data (PD)                | PD                                                           |

1 The Security Accelerator function is subject to export control and will be enabled only for approved device shipments.

2 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



2.2 DSP Core Description

The C66x Digital Signal Processor (DSP) extends the performance of the C64x+ and C674x DSPs through enhancements and new features. Many of the new features target increased performance for vector processing. The C64x+ and C674x DSPs support 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. On the C66x DSP, the vector processing capability is improved by extending the width of the SIMD instructions. C66x DSPs can execute instructions that operate on 128-bit vectors. For example the QMPY32 instruction is able to perform the element-to-element multiplication between two vectors of four 32-bit data each. The C66x DSP also supports SIMD for floating-point operations. Improved vector processing capability (each instruction can process multiple data in parallel) combined with the natural instruction level parallelism of C6000 architecture (e.g execution of up to 8 instructions per cycle) results in a very high level of parallelism that can be exploited by DSP programmers through the use of TI's optimized C/C++ compiler.

The C66x DSP consists of eight functional units, two register files, and two data paths as shown in Figure 2-1. The two general-purpose register files (A and B) each contain thirty-two 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Multiplies also support 128-bit data. 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). 128-bit data values are stored in register quadruplets, with the 32 LSBs of data placed in a multiple of 4 and the remaining 96 MSBs in the next 3 upper registers.

The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory.

Each C66x .M unit can perform one of the following fixed-point operations each clock cycle: four  $32 \times 32$  bit multiplies, sixteen  $16 \times 16$  bit multiplies, four  $16 \times 32$  bit multiplies, four  $8 \times 8$  bit multiplies, four  $8 \times 8$  bit multiplies with add operations, and four  $16 \times 16$  multiplies with add/subtract capabilities. There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. Each C66x .M unit can perform one  $16 \times 16$  bit complex multiply with or without rounding capabilities, two  $16 \times 16$  bit complex multiplies with rounding capability, and a  $32 \times 32$  bit complex multiply with rounding capability. The C66x can also perform two  $16 \times 16$  bit and one  $32 \times 32$  bit complex multiply instructions that multiply a complex number with a complex conjugate of another number with rounding capability. Communication signal processing also requires an extensive use of matrix operations. Each C66x .M unit is capable of multiplying a  $[1 \times 2]$  complex vector by a  $[2 \times 2]$  complex matrix per cycle with or without rounding capability. A version also exists allowing multiplication of the conjugate of a  $[1 \times 2]$  vector with a  $[2 \times 2]$  complex matrix.

Each C66x .M unit also includes IEEE floating-point multiplication operations from the C674x DSP, which includes one single-precision multiply each cycle and one double-precision multiply every 4 cycles. There is also a mixed-precision multiply that allows multiplication of a single-precision value by a double-precision value and an operation allowing multiplication of two single-precision numbers resulting in a double-precision number. The C66x DSP improves the performance over the C674x double-precision multiplies by adding a instruction allowing one double-precision multiply per cycle and also reduces the number of delay slots from 10 down to 4. Each C66x .M unit can also perform one the following floating-point operations each clock cycle: one, two, or four single-precision multiplies or a complex single-precision multiply.

The .L and .S units can now support up to 64-bit operands. This allows for new versions of many of the arithmetic, logical, and data packing instructions to allow for more parallel operations per cycle. Additional instructions were added yielding performance enhancements of the floating point addition and subtraction instructions, including the ability to perform one double precision addition or subtraction per cycle. Conversion to/from integer and



single-precision values can now be done on both .L and .S units on the C66x. Also, by taking advantage of the larger operands, instructions were also added to double the number of these conversions that can be done. The .L unit also has additional instructions for logical AND and OR instructions, as well as, 90 degree or 270 degree rotation of complex numbers (up to two per cycle). Instructions have also been added that allow for the computing the conjugate of a complex number.

The MFENCE instruction is a new instruction introduced on the C66x DSP. This instruction will create a DSP stall until the completion of all the DSP-triggered memory transactions, including:

- Cache line fills
- Writes from L1D to L2 or from the CorePac to MSMC and/or other system endpoints
- Victim write backs
- Block or global coherence operations
- Cache mode changes
- Outstanding XMC prefetch requests

This is useful as a simple mechanism for programs to wait for these requests to reach their endpoint. It also provides ordering guarantees for writes arriving at a single endpoint via multiple paths, multiprocessor algorithms that depend on ordering, and manual coherence operations.

For more details on the C66x DSP and its enhancements over the C64x+ and C674x architectures, see the following documents:

- *C66x DSP CPU and Instruction Set Reference Guide* in "Related Documentation from Texas Instruments" on page 72.
- C66x DSP Cache User Guide in "Related Documentation from Texas Instruments" on page 72.
- C66x DSP CorePac User Guide in "Related Documentation from Texas Instruments" on page 72.



Figure 2-1 shows the DSP core functional units and data paths.

#### Figure 2-1 DSP Core Data Paths



### 2.3 Memory Map Summary

Table 2-2 shows the memory map address ranges of the TMS320C6672 device.

| Table 2-2  | Memory Ma    | p Summary (Pa | art 1 of 7)             |         |                        |
|------------|--------------|---------------|-------------------------|---------|------------------------|
| Logical 32 | -bit Address | Physical 30   | Physical 36-bit Address |         |                        |
| Start      | End          | Start         | End                     | Bytes   | Description            |
| 0000000    | 007FFFFF     | 0 0000000     | 0 007FFFFF              | 8M      | Reserved               |
| 0080000    | 0087FFFF     | 0 0080000     | 0 0087FFFF              | 512K    | Local L2 SRAM          |
| 00880000   | 00DFFFFF     | 0 00880000    | 0 00DFFFFF              | 5M+512K | Reserved               |
| 00E00000   | 00E07FFF     | 0 00E00000    | 0 00E07FFF              | 32K     | Local L1P SRAM         |
| 00E08000   | 00EFFFFF     | 0 00E08000    | 0 00EFFFFF              | 1M-32K  | Reserved               |
| 00F00000   | 00F07FFF     | 0 00F00000    | 0 00F07FFF              | 32K     | Local L1D SRAM         |
| 00F08000   | 017FFFFF     | 0 00F08000    | 0 017FFFFF              | 9M-32K  | Reserved               |
| 01800000   | 01BFFFFF     | 0 01800000    | 0 01BFFFFF              | 4M      | C66x CorePac Registers |
| 01C00000   | 01CFFFFF     | 0 01C00000    | 0 01CFFFFF              | 1M      | Reserved               |
| 01D00000   | 01D0007F     | 0 01D00000    | 0 01D0007F              | 128     | Tracer_MSMC_0          |
| 01D00080   | 01D07FFF     | 0 01D00080    | 0 01D07FFF              | 32K-128 | Reserved               |
| 01D08000   | 01D0807F     | 0 01D08000    | 0 01D0807F              | 128     | Tracer_MSMC_1          |
| 01D08080   | 01D0FFFF     | 0 01D08080    | 0 01D0FFFF              | 32K-128 | Reserved               |
| 01D10000   | 01D1007F     | 0 01D10000    | 0 01D1007F              | 128     | Tracer_MSMC_2          |
| 01D10080   | 01D17FFF     | 0 01D10080    | 0 01D17FFF              | 32K-128 | Reserved               |
| 01D18000   | 01D1807F     | 0 01D18000    | 0 01D1807F              | 128     | Tracer_MSMC_3          |
| 01D18080   | 01D1FFFF     | 0 01D18080    | 0 01D1FFFF              | 32K-128 | Reserved               |
| 01D20000   | 01D2007F     | 0 01D20000    | 0 01D2007F              | 128     | Tracer_QM_DMA          |
| 01D20080   | 01D27FFF     | 0 01D20080    | 0 01D27FFF              | 32K-128 | Reserved               |
| 01D28000   | 01D2807F     | 0 01D28000    | 0 01D2807F              | 128     | Tracer_DDR             |
| 01D28080   | 01D2FFFF     | 0 01D28080    | 0 01D2FFFF              | 32K-128 | Reserved               |
| 01D30000   | 01D3007F     | 0 01D30000    | 0 01D3007F              | 128     | Tracer_SM              |
| 01D30080   | 01D37FFF     | 0 01D30080    | 0 01D37FFF              | 32K-128 | Reserved               |
| 01D38000   | 01D3807F     | 0 01D38000    | 0 01D3807F              | 128     | Tracer_QM_CFG          |
| 01D38080   | 01D3FFFF     | 0 01D38080    | 0 01D3FFFF              | 32K-128 | Reserved               |
| 01D40000   | 01D4007F     | 0 01D40000    | 0 01D4007F              | 128     | Tracer_CFG             |
| 01D40080   | 01D47FFF     | 0 01D40080    | 0 01D47FFF              | 32K-128 | Reserved               |
| 01D48000   | 01D4807F     | 0 01D48000    | 0 01D4807F              | 128     | Tracer_L2_0            |
| 01D48080   | 01D4FFFF     | 0 01D48080    | 0 01D4FFFF              | 32K-128 | Reserved               |
| 01D50000   | 01D5007F     | 0 01D50000    | 0 01D5007F              | 128     | Tracer_L2_1            |
| 01D50080   | 01D57FFF     | 0 01D50080    | 0 01D57FFF              | 32K-128 | Reserved               |
| 01D58000   | 01D5807F     | 0 01D58000    | 0 01D5807F              | 128     | Reserved               |
| 01D58080   | 01D5FFFF     | 0 01D58080    | 0 01D5FFFF              | 32K-128 | Reserved               |
| 01D60000   | 01D6007F     | 0 01D60000    | 0 01D6007F              | 128     | Reserved               |
| 01D60080   | 01D67FFF     | 0 01D60080    | 0 01D67FFF              | 32K-128 | Reserved               |
| 01D68000   | 01D6807F     | 0 01D68000    | 0 01D6807F              | 128     | Reserved               |
| 01D68080   | 01D6FFFF     | 0 01D68080    | 0 01D6FFFF              | 32K-128 | Reserved               |
| 01D70000   | 01D7007F     | 0 01D70000    | 0 01D7007F              | 128     | Reserved               |
| 01D70080   | 01D77FFF     | 0 01D70080    | 0 01D77FFF              | 32K-128 | Reserved               |
| 01D78000   | 01D7807F     | 0 01D78000    | 0 01D7807F              | 128     | Reserved               |

#### Table 2-2 Memory Map Summary (Part 1 of 7)

## TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**

SPRS708E—March 2014



#### Table 2-2 Memory Map Summary (Part 2 of 7)

| Logical 3 | 2-bit Address | Physical 36-bit Address |            |          |                                                                                                         |  |  |  |
|-----------|---------------|-------------------------|------------|----------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Start     | End           | Start                   | End        | Bytes    | Description                                                                                             |  |  |  |
| 01D78080  | 01D7FFFF      | 0 01D78080              | 0 01D7FFFF | 32K-128  | Reserved                                                                                                |  |  |  |
| 01D80000  | 01D8007F      | 0 01D80000              | 0 01D8007F | 128      | Reserved                                                                                                |  |  |  |
| 01D80080  | 01DFFFFF      | 0 01D80080              | 0 01DFFFFF | 512K-128 | Reserved                                                                                                |  |  |  |
| 01E00000  | 01E3FFFF      | 0 01E00000              | 0 01E3FFFF | 256K     | Telecom Serial Interface Port (TSIP) 0                                                                  |  |  |  |
| 01E40000  | 01E7FFFF      | 0 01E40000              | 0 01E7FFFF | 256K     | Reserved                                                                                                |  |  |  |
| 01E80000  | 01EBFFFF      | 0 01E80000              | 0 01EBFFFF | 256K     | Telecom Serial Interface Port (TSIP) 1                                                                  |  |  |  |
| 01EC0000  | 01FFFFFF      | 0 01EC0000              | 0 01FFFFFF | 1M +256K | Reserved                                                                                                |  |  |  |
| 02000000  | 020FFFFF      | 0 02000000              | 0 020FFFFF | 1M       | Network Coprocessor (Packet Accelerator, Gigabit Ethernet<br>Switch Subsystem and Security Accelerator) |  |  |  |
| 02100000  | 021FFFFF      | 0 02100000              | 0 021FFFFF | 1M       | Reserved                                                                                                |  |  |  |
| 02200000  | 0220007F      | 0 02200000              | 0 0220007F | 128      | Timer0                                                                                                  |  |  |  |
| 02200080  | 0220FFFF      | 0 02200080              | 0 0220FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02210000  | 0221007F      | 0 02210000              | 0 0221007F | 128      | Timer1                                                                                                  |  |  |  |
| 02210080  | 0221FFFF      | 0 02210080              | 0 0221FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02220000  | 0222007F      | 0 02220000              | 0 0222007F | 128      | Reserved                                                                                                |  |  |  |
| 02220080  | 0222FFFF      | 0 02220080              | 0 0222FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02230000  | 0223007F      | 0 02230000              | 0 0223007F | 128      | Reserved                                                                                                |  |  |  |
| 02230080  | 0223FFFF      | 0 02230080              | 0 0223FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02240000  | 0224007F      | 0 02240000              | 0 0224007F | 128      | Reserved                                                                                                |  |  |  |
| 02240080  | 0224FFFF      | 0 02240080              | 0 0224FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02250000  | 0225007F      | 0 02250000              | 0 0225007F | 128      | Reserved                                                                                                |  |  |  |
| 02250080  | 0225FFFF      | 0 02250080              | 0 0225FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02260000  | 0226007F      | 0 02260000              | 0 0226007F | 128      | Reserved                                                                                                |  |  |  |
| 02260080  | 0226FFFF      | 0 02260080              | 0 0226FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02270000  | 0227007F      | 0 02270000              | 0 0227007F | 128      | Reserved                                                                                                |  |  |  |
| 02270080  | 0227FFFF      | 0 02270080              | 0 0227FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02280000  | 0228007F      | 0 02280000              | 0 0228007F | 128      | Timer8                                                                                                  |  |  |  |
| 02280080  | 0228FFFF      | 0 02280080              | 0 0228FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02290000  | 0229007F      | 0 02290000              | 0 0229007F | 128      | Timer9                                                                                                  |  |  |  |
| 02290080  | 0229FFFF      | 0 02290080              | 0 0229FFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022A0000  | 022A007F      | 0 022A0000              | 0 022A007F | 128      | Timer10                                                                                                 |  |  |  |
| 022A0080  | 022AFFFF      | 0 022A0080              | 0 022AFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022B0000  | 022B007F      | 0 022B0000              | 0 022B007F | 128      | Timer11                                                                                                 |  |  |  |
| 022B0080  | 022BFFFF      | 0 022B0080              | 0 022BFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022C0000  | 022C007F      | 0 022C0000              | 0 022C007F | 128      | Timer12                                                                                                 |  |  |  |
| 022C0080  | 022CFFFF      | 0 022C0080              | 0 022CFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022D0000  | 022D007F      | 0 022D0000              | 0 022D007F | 128      | Timer13                                                                                                 |  |  |  |
| 022D0080  | 022DFFFF      | 0 022D0080              | 0 022DFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022E0000  | 022E007F      | 0 022E0000              | 0 022E007F | 128      | Timer14                                                                                                 |  |  |  |
| 022E0080  | 022EFFFF      | 0 022E0080              | 0 022EFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 022F0000  | 022F007F      | 0 022F0000              | 0 022F007F | 128      | Timer15                                                                                                 |  |  |  |
| 022F0080  | 022FFFFF      | 0 022F0080              | 0 022FFFFF | 64K-128  | Reserved                                                                                                |  |  |  |
| 02300000  | 0230FFFF      | 0 02300000              | 0 0230FFFF | 64K      | Reserved                                                                                                |  |  |  |



| Table 2-2   Memory Map Summary (Part 3 of 7) |               |            |               |         |                                   |  |  |  |  |
|----------------------------------------------|---------------|------------|---------------|---------|-----------------------------------|--|--|--|--|
| Logical 3                                    | 2-bit Address | Physical 3 | 6-bit Address |         |                                   |  |  |  |  |
| Start                                        | Start End     |            | End           | Bytes   | Description                       |  |  |  |  |
| 02310000                                     | 023101FF      | 0 02310000 | 0 023101FF    | 512     | PLL Controller                    |  |  |  |  |
| 02310200                                     | 0231FFFF      | 0 02310200 | 0 0231FFFF    | 64K-512 | Reserved                          |  |  |  |  |
| 02320000                                     | 023200FF      | 0 02320000 | 0 023200FF    | 256     | GPIO                              |  |  |  |  |
| 02320100                                     | 0232FFFF      | 0 02320100 | 0 0232FFFF    | 64K-256 | Reserved                          |  |  |  |  |
| 02330000                                     | 023303FF      | 0 02330000 | 0 023303FF    | 1K      | SmartReflex                       |  |  |  |  |
| 02330400                                     | 0234FFFF      | 0 02330400 | 0 0234FFFF    | 127K    | Reserved                          |  |  |  |  |
| 02350000                                     | 02350FFF      | 0 02350000 | 0 02350FFF    | 4K      | Power Sleep Controller (PSC)      |  |  |  |  |
| 02351000                                     | 0235FFFF      | 0 02351000 | 0 0235FFFF    | 64K-4K  | Reserved                          |  |  |  |  |
| 02360000                                     | 023603FF      | 0 02360000 | 0 023603FF    | 1K      | Memory Protection Unit (MPU) 0    |  |  |  |  |
| 02360400                                     | 02367FFF      | 0 02360400 | 0 02367FFF    | 31K     | Reserved                          |  |  |  |  |
| 02368000                                     | 023683FF      | 0 02368000 | 0 023683FF    | 1K      | Memory Protection Unit (MPU) 1    |  |  |  |  |
| 02368400                                     | 0236FFFF      | 0 02368400 | 0 0236FFFF    | 31K     | Reserved                          |  |  |  |  |
| 02370000                                     | 023703FF      | 0 02370000 | 0 023703FF    | 1K      | Memory Protection Unit (MPU) 2    |  |  |  |  |
| 02370400                                     | 02377FFF      | 0 02370400 | 0 02377FFF    | 31K     | Reserved                          |  |  |  |  |
| 02378000                                     | 023783FF      | 0 02378000 | 0 023783FF    | 1K      | Memory Protection Unit (MPU) 3    |  |  |  |  |
| 02378400                                     | 023FFFFF      | 0 02378400 | 0 023FFFFF    | 543K    | Reserved                          |  |  |  |  |
| 02400000                                     | 0243FFFF      | 0 02400000 | 0 0243FFFF    | 256K    | Debug Subsystem Configuration     |  |  |  |  |
| 02440000                                     | 02443FFF      | 0 02440000 | 0 02443FFF    | 16K     | DSP trace formatter 0             |  |  |  |  |
| 02444000                                     | 0244FFFF      | 0 02444000 | 0 0244FFFF    | 48K     | Reserved                          |  |  |  |  |
| 02450000                                     | 02453FFF      | 0 02450000 | 0 02453FFF    | 16K     | DSP trace formatter 1             |  |  |  |  |
| 02454000                                     | 0245FFFF      | 0 02454000 | 0 0245FFFF    | 48K     | Reserved                          |  |  |  |  |
| 02460000                                     | 02463FFF      | 0 02460000 | 0 02463FFF    | 16K     | Reserved                          |  |  |  |  |
| 02464000                                     | 0246FFFF      | 0 02464000 | 0 0246FFFF    | 48K     | Reserved                          |  |  |  |  |
| 02470000                                     | 02473FFF      | 0 02470000 | 0 02473FFF    | 16K     | Reserved                          |  |  |  |  |
| 02474000                                     | 0247FFFF      | 0 02474000 | 0 0247FFFF    | 48K     | Reserved                          |  |  |  |  |
| 02480000                                     | 02483FFF      | 0 02480000 | 0 02483FFF    | 16K     | Reserved                          |  |  |  |  |
| 02484000                                     | 0248FFFF      | 0 02484000 | 0 0248FFFF    | 48K     | Reserved                          |  |  |  |  |
| 02490000                                     | 02493FFF      | 0 02490000 | 0 02493FFF    | 16K     | Reserved                          |  |  |  |  |
| 02494000                                     | 0249FFFF      | 0 02494000 | 0 0249FFFF    | 48K     | Reserved                          |  |  |  |  |
| 024A0000                                     | 024A3FFF      | 0 024A0000 | 0 024A3FFF    | 16K     | Reserved                          |  |  |  |  |
| 024A4000                                     | 024AFFFF      | 0 024A4000 | 0 024AFFFF    | 48K     | Reserved                          |  |  |  |  |
| 024B0000                                     | 024B3FFF      | 0 024B0000 | 0 024B3FFF    | 16K     | Reserved                          |  |  |  |  |
| 024B4000                                     | 024BFFFF      | 0 024B4000 | 0 024BFFFF    | 48K     | Reserved                          |  |  |  |  |
| 024C0000                                     | 0252FFFF      | 0 024C0000 | 0 0252FFFF    | 448K    | Reserved                          |  |  |  |  |
| 02530000                                     | 0253007F      | 0 02530000 | 0 0253007F    | 128     | I <sup>2</sup> C data & control   |  |  |  |  |
| 02530080                                     | 0253FFFF      | 0 02530080 | 0 0253FFFF    | 64K-128 | Reserved                          |  |  |  |  |
| 02540000                                     | 0254003F      | 0 02540000 | 0 0254003F    | 64      | UART                              |  |  |  |  |
| 02540400                                     | 0254FFFF      | 0 02540400 | 0 0254FFFF    | 64K-64  | Reserved                          |  |  |  |  |
| 02550000                                     | 025FFFFF      | 0 02550000 | 0 025FFFFF    | 704K    | Reserved                          |  |  |  |  |
| 02600000                                     | 02601FFF      | 0 02600000 | 0 02601FFF    | 8K      | Chip Interrupt Controller (CIC) 0 |  |  |  |  |
| 02602000                                     | 02603FFF      | 0 02602000 | 0 02603FFF    | 8K      | Reserved                          |  |  |  |  |
| 02604000                                     | 02605FFF      | 0 02604000 | 0 02605FFF    | 8K      | Reserved                          |  |  |  |  |
| 02606000                                     | 02607FFF      | 0 02606000 | 0 02607FFF    | 8K      | Reserved                          |  |  |  |  |

## Table 2-2 Memory Map Summary (Part 3 of 7)

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014



#### Table 2-2Memory Map Summary (Part 4 of 7)

| 02608000<br>0260A000<br>0260C000<br>0260E000<br>02620000 | bit Address           End           02609FFF           0260BFFF           0260DFFF           0260DFFF           0261FFF | Physical 36           Start           0 02608000           0 0260A000 | -bit Address<br>End<br>0 02609FFF | Bytes  | Description                                |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|--------|--------------------------------------------|
| 02608000<br>0260A000<br>0260C000<br>0260E000<br>02620000 | 02609FFF<br>0260BFFF<br>0260DFFF                                                                                        | 0 02608000                                                            | -                                 |        | Description                                |
| 0260A000<br>0260C000<br>0260E000<br>02620000             | 0260BFFF<br>0260DFFF                                                                                                    |                                                                       | 0 02609FFF                        |        |                                            |
| 0260C000 0260E000 02620000                               | 0260DFFF                                                                                                                | 0 0260A000                                                            |                                   | 8K     | Chip Interrupt Controller (CIC) 2          |
| 0260E000<br>02620000                                     |                                                                                                                         |                                                                       | 0 0260BFFF                        | 8K     | Reserved                                   |
| 02620000                                                 | 0261FFFF                                                                                                                | 0 0260C000                                                            | 0 0260DFFF                        | 8K     | Chip Interrupt Controller (CIC) 3          |
|                                                          |                                                                                                                         | 0 0260E000                                                            | 0 0261FFFF                        | 72K    | Reserved                                   |
|                                                          | 026207FF                                                                                                                | 0 02620000                                                            | 0 026207FF                        | 2K     | Chip-Level Registers                       |
| 02620800                                                 | 0263FFFF                                                                                                                | 0 02620800                                                            | 0 0263FFFF                        | 126K   | Reserved                                   |
| 02640000                                                 | 026407FF                                                                                                                | 0 02640000                                                            | 0 026407FF                        | 2K     | Semaphore                                  |
| 02640800                                                 | 0264FFFF                                                                                                                | 0 02640800                                                            | 0 0264FFFF                        | 64K-2K | Reserved                                   |
| 02650000                                                 | 026FFFFF                                                                                                                | 0 02650000                                                            | 0 026FFFFF                        | 704K   | Reserved                                   |
| 02700000                                                 | 02707FFF                                                                                                                | 0 02700000                                                            | 0 02707FFF                        | 32K    | EDMA3 Channel Controller (EDMA3CC) 0       |
| 02708000                                                 | 0271FFFF                                                                                                                | 0 02708000                                                            | 0 0271FFFF                        | 96K    | Reserved                                   |
| 02720000                                                 | 02727FFF                                                                                                                | 0 02720000                                                            | 0 02727FFF                        | 32K    | EDMA3 Channel Controller (EDMA3CC) 1       |
| 02728000                                                 | 0273FFFF                                                                                                                | 0 02728000                                                            | 0 0273FFFF                        | 96K    | Reserved                                   |
| 02740000                                                 | 02747FFF                                                                                                                | 0 02740000                                                            | 0 02747FFF                        | 32K    | EDMA3 Channel Controller (EDMA3CC) 2       |
| 02748000                                                 | 0275FFFF                                                                                                                | 0 02748000                                                            | 0 0275FFFF                        | 96K    | Reserved                                   |
| 02760000                                                 | 027603FF                                                                                                                | 0 02760000                                                            | 0 027603FF                        | 1K     | EDMA3CC0 Transfer Controller (EDMA3TC) 0   |
| 02760400                                                 | 02767FFF                                                                                                                | 0 02760400                                                            | 0 02767FFF                        | 31K    | Reserved                                   |
| 02768000                                                 | 027683FF                                                                                                                | 0 02768000                                                            | 0 027683FF                        | 1K     | EDMA3CC0 Transfer Controller (EDMA3TC) 1   |
| 02768400                                                 | 0276FFFF                                                                                                                | 0 02768400                                                            | 0 0276FFFF                        | 31K    | Reserved                                   |
| 02770000                                                 | 027703FF                                                                                                                | 0 02770000                                                            | 0 027703FF                        | 1K     | EDMA3CC1 Transfer Controller (EDMA3TC) 0   |
| 02770400                                                 | 02777FFF                                                                                                                | 0 02770400                                                            | 0 02777FFF                        | 31K    | Reserved                                   |
| 02778000                                                 | 027783FF                                                                                                                | 0 02778000                                                            | 0 027783FF                        | 1K     | EDMA3CC1 Transfer Controller (EDMA3TC) 1   |
| 02778400                                                 | 0277FFFF                                                                                                                | 0 02778400                                                            | 0 0277FFFF                        | 31K    | Reserved                                   |
| 02780000                                                 | 027803FF                                                                                                                | 0 02780000                                                            | 0 027803FF                        | 1K     | EDMA3CC1 Transfer Controller (EDMA3TC) 2   |
| 02780400                                                 | 02787FFF                                                                                                                | 0 02780400                                                            | 0 02787FFF                        | 31K    | Reserved                                   |
| 02788000                                                 | 027883FF                                                                                                                | 0 02788000                                                            | 0 027883FF                        | 1K     | EDMA3CC1 Transfer Controller (EDMA3TC) 3   |
| 02788400                                                 | 0278FFFF                                                                                                                | 0 02788400                                                            | 0 0278FFFF                        | 31K    | Reserved                                   |
| 02790000                                                 | 027903FF                                                                                                                | 0 02790000                                                            | 0 027903FF                        | 1K     | EDMA3PCC2 Transfer Controller (EDMA3TC) 0  |
| 02790400                                                 | 02797FFF                                                                                                                | 0 02790400                                                            | 0 02797FFF                        | 31K    | Reserved                                   |
| 02798000                                                 | 027983FF                                                                                                                | 0 02798000                                                            | 0 027983FF                        | 1K     | EDMA3CC2 Transfer Controller (EDMA3TC) 1   |
| 02798400                                                 | 0279FFFF                                                                                                                | 0 02798400                                                            | 0 0279FFFF                        | 31K    | Reserved                                   |
| 027A0000                                                 | 027A03FF                                                                                                                | 0 027A0000                                                            | 0 027A03FF                        | 1K     | EDMA3CC2 Transfer Controller (EDMA3TC) 2   |
| 027A0400                                                 | 027A7FFF                                                                                                                | 0 027A0400                                                            | 0 027A7FFF                        | 31K    | Reserved                                   |
| 027A8000                                                 | 027A83FF                                                                                                                | 0 027A8000                                                            | 0 027A83FF                        | 1K     | EDMA3CC2 Transfer Controller (EDMA3TC) 3   |
| 027A8400                                                 | 027AFFFF                                                                                                                | 0 027A8400                                                            | 0 027AFFFF                        | 31K    | Reserved                                   |
| 027B0000                                                 | 027CFFFF                                                                                                                | 0 027B0000                                                            | 0 027CFFFF                        | 128K   | Reserved                                   |
| 027D0000                                                 | 027D0FFF                                                                                                                | 0 027D0000                                                            | 0 027D0FFF                        | 4K     | TI embedded trace buffer (TETB) - CorePac0 |
| 027D1000                                                 | 027DFFFF                                                                                                                | 0 027D1000                                                            | 0 027DFFFF                        | 60K    | Reserved                                   |
| 027E0000                                                 | 027E0FFF                                                                                                                | 0 027E0000                                                            | 0 027E0FFF                        | 4K     | TI embedded trace buffer (TETB) - CorePac1 |
| 027E1000                                                 | 027EFFFF                                                                                                                | 0 027E1000                                                            | 0 027EFFFF                        | 60K    | Reserved                                   |
| 027F0000                                                 | 027F0FFF                                                                                                                | 0 027F0000                                                            | 0 027F0FFF                        | 4K     | Reserved                                   |
| 027F1000                                                 | 027FFFFF                                                                                                                | 0 027F1000                                                            | 0 027FFFFF                        | 60K    | Reserved                                   |
| 02800000                                                 | 02800FFF                                                                                                                | 0 02800000                                                            | 0 02800FFF                        | 4K     | Reserved                                   |



| Table 2-2 | Memory Ma     | p Summary (P |                         |         |                                                  |
|-----------|---------------|--------------|-------------------------|---------|--------------------------------------------------|
| Logical 3 | 2-bit Address | Physical 3   | Physical 36-bit Address |         |                                                  |
| Start     | Start End     |              | End                     | Bytes   | Description                                      |
| 02801000  | 0280FFFF      | 0 02801000   | 0 0280FFFF              | 60K     | Reserved                                         |
| 02810000  | 02810FFF      | 0 02810000   | 0 02810FFF              | 4K      | Reserved                                         |
| 02811000  | 0281FFFF      | 0 02811000   | 0 0281FFFF              | 60K     | Reserved                                         |
| 02820000  | 02820FFF      | 0 02820000   | 0 02820FFF              | 4K      | Reserved                                         |
| 02821000  | 0282FFFF      | 0 02821000   | 0 0282FFFF              | 60K     | Reserved                                         |
| 02830000  | 02830FFF      | 0 02830000   | 0 02830FFF              | 4K      | Reserved                                         |
| 02831000  | 0283FFFF      | 0 02831000   | 0 0283FFFF              | 60K     | Reserved                                         |
| 02840000  | 02840FFF      | 0 02840000   | 0 02840FFF              | 4K      | Reserved                                         |
| 02841000  | 0284FFFF      | 0 02841000   | 0 0284FFFF              | 60K     | Reserved                                         |
| 02850000  | 02857FFF      | 0 02850000   | 0 02857FFF              | 32K     | TI embedded trace buffer (TETB) — system         |
| 02858000  | 0285FFFF      | 0 02858000   | 0 0285FFFF              | 32K     | Reserved                                         |
| 02860000  | 028FFFFF      | 0 02860000   | 0 028FFFFF              | 640K    | Reserved                                         |
| 02900000  | 02920FFF      | 0 02900000   | 0 02920FFF              | 132K    | Serial RapidIO (SRIO) configuration              |
| 02921000  | 029FFFFF      | 0 02921000   | 0 029FFFFF              | 1M-132K | Reserved                                         |
| 02A00000  | 02BFFFFF      | 0 02A00000   | 0 02BFFFFF              | 2M      | Queue manager subsystem configuration            |
| 02C00000  | 07FFFFF       | 0 02C00000   | 0 07FFFFFF              | 84M     | Reserved                                         |
| 08000000  | 0800FFFF      | 0 08000000   | 0 0800FFFF              | 64K     | Extended memory controller (XMC) configuration   |
| 08010000  | OBBFFFFF      | 0 08010000   | 0 OBBFFFFF              | 60M-64K | Reserved                                         |
| 0BC00000  | OBCFFFFF      | 0 0BC00000   | 0 0BCFFFFF              | 1M      | Multicore shared memory controller (MSMC) config |
| 0BD00000  | OBFFFFF       | 0 0BD00000   | 0 OBFFFFFF              | 3M      | Reserved                                         |
| 0C000000  | 0C3FFFFF      | 0 0C000000   | 0 0C3FFFFF              | 4M      | Multicore shared memory (MSM)                    |
| 0C400000  | 107FFFFF      | 0 0C400000   | 0 107FFFFF              | 68 M    | Reserved                                         |
| 10800000  | 1087FFFF      | 0 10800000   | 0 1087FFFF              | 512K    | CorePac0 L2 SRAM                                 |
| 10880000  | 108FFFFF      | 0 10880000   | 0 108FFFFF              | 512K    | Reserved                                         |
| 10900000  | 10DFFFFF      | 0 10900000   | 0 10DFFFFF              | 5M      | Reserved                                         |
| 10E00000  | 10E07FFF      | 0 10E00000   | 0 10E07FFF              | 32K     | CorePac0 L1P SRAM                                |
| 10E08000  | 10EFFFFF      | 0 10E08000   | 0 10EFFFFF              | 1M-32K  | Reserved                                         |
| 10F00000  | 10F07FFF      | 0 10F00000   | 0 10F07FFF              | 32K     | CorePac0 L1D SRAM                                |
| 10F08000  | 117FFFFF      | 0 10F08000   | 0 117FFFFF              | 9M-32K  | Reserved                                         |
| 11800000  | 1187FFFF      | 0 11800000   | 0 1187FFFF              | 512K    | CorePac1 L2 SRAM                                 |
| 11880000  | 118FFFFF      | 0 11880000   | 0 118FFFFF              | 512K    | Reserved                                         |
| 11900000  | 11DFFFFF      | 0 11900000   | 0 11DFFFFF              | 5M      | Reserved                                         |
| 11E00000  | 11E07FFF      | 0 11E00000   | 0 11E07FFF              | 32K     | CorePac1 L1P SRAM                                |
| 11E08000  | 11EFFFFF      | 0 11E08000   | 0 11EFFFFF              | 1M-32K  | Reserved                                         |
| 11F00000  | 11F07FFF      | 0 11F00000   | 0 11F07FFF              | 32K     | CorePac1 L1D SRAM                                |
| 11F08000  | 127FFFFF      | 0 11F08000   | 0 127FFFFF              | 9M-32K  | Reserved                                         |
| 12800000  | 1287FFFF      | 0 12800000   | 0 1287FFFF              | 512K    | Reserved                                         |
| 12880000  | 128FFFFF      | 0 12880000   | 0 128FFFFF              | 512K    | Reserved                                         |
| 12900000  | 12DFFFFF      | 0 12900000   | 0 12DFFFFF              | 5M      | Reserved                                         |
| 12E00000  | 12E07FFF      | 0 12E00000   | 0 12E07FFF              | 32K     | Reserved                                         |
| 12E08000  | 12EFFFFF      | 0 12E08000   | 0 12EFFFFF              | 1M-32K  | Reserved                                         |
| 12F00000  | 12F07FFF      | 0 12F00000   | 0 12F07FFF              | 32K     | Reserved                                         |
| 12F08000  | 137FFFFF      | 0 12F08000   | 0 137FFFFF              | 9M-32K  | Reserved                                         |

## Table 2-2 Memory Map Summary (Part 5 of 7)

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014



#### Table 2-2Memory Map Summary (Part 6 of 7)

| Table 2-2 |               | · ·                     | Summary (Part 6 of 7) |             |                                          |  |  |
|-----------|---------------|-------------------------|-----------------------|-------------|------------------------------------------|--|--|
| -         | 2-bit Address | Physical 36-bit Address |                       | -           |                                          |  |  |
| Start     |               |                         | Bytes                 | Description |                                          |  |  |
| 13800000  | 1387FFFF      | 0 13800000              | 0 1387FFFF            | 512K        | Reserved                                 |  |  |
| 13880000  | 138FFFFF      | 0 13880000              | 0 138FFFFF            | 512K        | Reserved                                 |  |  |
| 13900000  | 13DFFFFF      | 0 13900000              | 0 13DFFFFF            | 5M          | Reserved                                 |  |  |
| 13E00000  | 13E07FFF      | 0 13E00000              | 0 13E07FFF            | 32K         | Reserved                                 |  |  |
| 13E08000  | 13EFFFFF      | 0 13E08000              | 0 13EFFFFF            | 1M-32K      | Reserved                                 |  |  |
| 13F00000  | 13F07FFF      | 0 13F00000              | 0 13F07FFF            | 32K         | Reserved                                 |  |  |
| 13F08000  | 147FFFFF      | 0 13F08000              | 0 147FFFFF            | 9M-32K      | Reserved                                 |  |  |
| 14800000  | 1487FFFF      | 0 14800000              | 0 1487FFFF            | 512K        | Reserved                                 |  |  |
| 14880000  | 148FFFFF      | 0 14880000              | 0 148FFFFF            | 512K        | Reserved                                 |  |  |
| 14900000  | 14DFFFFF      | 0 14900000              | 0 14DFFFFF            | 5M          | Reserved                                 |  |  |
| 14E00000  | 14E07FFF      | 0 14E00000              | 0 14E07FFF            | 32K         | Reserved                                 |  |  |
| 14E08000  | 14EFFFFF      | 0 14E08000              | 0 14EFFFFF            | 1M-32K      | Reserved                                 |  |  |
| 14F00000  | 14F07FFF      | 0 14F00000              | 0 14F07FFF            | 32K         | Reserved                                 |  |  |
| 14F08000  | 157FFFFF      | 0 14F08000              | 0 157FFFFF            | 9M-32K      | Reserved                                 |  |  |
| 15800000  | 1587FFFF      | 0 15800000              | 0 1587FFFF            | 512K        | Reserved                                 |  |  |
| 15880000  | 158FFFFF      | 0 15880000              | 0 158FFFFF            | 512K        | Reserved                                 |  |  |
| 15900000  | 15DFFFFF      | 0 15900000              | 0 15DFFFFF            | 5M          | Reserved                                 |  |  |
| 15E00000  | 15E07FFF      | 0 15E00000              | 0 15E07FFF            | 32K         | Reserved                                 |  |  |
| 15E08000  | 15EFFFFF      | 0 15E08000              | 0 15EFFFFF            | 1M-32K      | Reserved                                 |  |  |
| 15F00000  | 15F07FFF      | 0 15F00000              | 0 15F07FFF            | 32K         | Reserved                                 |  |  |
| 15F08000  | 167FFFF       | 0 15F08000              | 0 167FFFFF            | 9M-32K      | Reserved                                 |  |  |
| 16800000  | 1687FFFF      | 0 16800000              | 0 1687FFFF            | 512K        | Reserved                                 |  |  |
| 16880000  | 168FFFFF      | 0 16880000              | 0 168FFFFF            | 512K        | Reserved                                 |  |  |
| 16900000  | 16DFFFFF      | 0 16900000              | 0 16DFFFFF            | 5M          | Reserved                                 |  |  |
| 16E00000  | 16E07FFF      | 0 16E00000              | 0 16E07FFF            | 32K         | Reserved                                 |  |  |
| 16E08000  | 16EFFFFF      | 0 16E08000              | 0 16EFFFFF            | 1M-32K      | Reserved                                 |  |  |
| 16F00000  | 16F07FFF      | 0 16F00000              | 0 16F07FFF            | 32K         | Reserved                                 |  |  |
| 16F08000  | 177FFFFF      | 0 16F08000              | 0 177FFFFF            | 9M-32K      | Reserved                                 |  |  |
| 17800000  | 1787FFFF      | 0 17800000              | 0 1787FFFF            | 512K        | Reserved                                 |  |  |
| 17880000  | 178FFFFF      | 0 17880000              | 0 178FFFFF            | 512K        | Reserved                                 |  |  |
| 17900000  | 17DFFFFF      | 0 17900000              | 0 17DFFFFF            | 5M          | Reserved                                 |  |  |
| 17E00000  | 17E07FFF      | 0 17E00000              | 0 17E07FFF            | 32K         | Reserved                                 |  |  |
| 17E08000  | 17EFFFFF      | 0 17E08000              | 0 17EFFFFF            | 1M-32K      | Reserved                                 |  |  |
| 17F00000  | 17F07FFF      | 0 17F00000              | 0 17F07FFF            | 32K         | Reserved                                 |  |  |
| 17F08000  | 1FFFFFFF      | 0 17F08000              | 0 1FFFFFFF            | 129M-32K    | Reserved                                 |  |  |
| 20000000  | 200FFFFF      | 0 20000000              | 0 200FFFFF            | 1M          | System trace manager (STM) configuration |  |  |
| 20100000  | 20AFFFFF      | 0 20100000              | 0 20AFFFFF            | 10M         | Reserved                                 |  |  |
| 20B00000  | 20B1FFFF      | 0 20B00000              | 0 20B1FFFF            | 128K        | Boot ROM                                 |  |  |
| 20B20000  | 20BEFFFF      | 0 20B20000              | 0 20BEFFFF            | 832K        | Reserved                                 |  |  |
| 20BF0000  | 20BF01FF      | 0 20BF0000              | 0 20BF01FF            | 512         | SPI                                      |  |  |
| 20BF0200  | 20BFFFFF      | 0 20BF0200              | 0 20BFFFFF            | 64K-512     | Reserved                                 |  |  |
| 20C00000  | 20C000FF      | 0 2000000               | 0 20C000FF            | 256         | EMIF16 config                            |  |  |
| 20C00000  | 20C00011      | 0 20C00000              | 0 20FFFFFF            | 12M - 256   | Reserved                                 |  |  |
| 2000100   | 2011111       | 5 2000100               | 52011111              | 12101 230   | heserved                                 |  |  |

| Table 2-2    | Memory Ma     | ap Summary (F | Part 7 of 7)  |          |                                                                         |
|--------------|---------------|---------------|---------------|----------|-------------------------------------------------------------------------|
| Logical 3    | 2-bit Address | Physical 3    | 6-bit Address |          |                                                                         |
| Start        | End           | Start         | End           | Bytes    | Description                                                             |
| 21000000     | 210001FF      | 1 00000000    | 1 000001FF    | 512      | DDR3 EMIF configuration                                                 |
| 21000200     | 213FFFFF      | 0 21000200    | 0 213FFFFF    | 4M-512   | Reserved                                                                |
| 21400000     | 214000FF      | 0 21400000    | 0 214000FF    | 256      | HyperLink config                                                        |
| 21400100     | 217FFFFF      | 0 21400100    | 0 217FFFFF    | 4M-256   | Reserved                                                                |
| 21800000     | 21807FFF      | 0 21800000    | 0 21807FFF    | 32K      | PCle config                                                             |
| 21808000     | 33FFFFFF      | 0 21808000    | 0 33FFFFFF    | 296M-32K | Reserved                                                                |
| 34000000     | 341FFFFF      | 0 34000000    | 0 341FFFFF    | 2M       | Queue manager subsystem data                                            |
| 34200000     | 3FFFFFF       | 0 34200000    | 0 3FFFFFFF    | 190M     | Reserved                                                                |
| 4000000      | 4FFFFFF       | 0 40000000    | 0 4FFFFFFF    | 256M     | HyperLink data                                                          |
| 5000000      | 5FFFFFF       | 0 50000000    | 0 5FFFFFFF    | 256M     | Reserved                                                                |
| 6000000      | 6FFFFFF       | 0 60000000    | 0 6FFFFFFF    | 256M     | PCIe data                                                               |
| 7000000      | 73FFFFF       | 0 70000000    | 073FFFFFF     | 64M      | EMIF16 CE0 data space, supports NAND, NOR or SRAM memory <sup>(1</sup>  |
| 7400000      | 77FFFFFF      | 0 74000000    | 0 77FFFFFF    | 64M      | EMIF16 CE1 data space, supports NAND, NOR or SRAM memory <sup>(1</sup>  |
| 78000000     | 7BFFFFF       | 0 78000000    | 0 7BFFFFFF    | 64M      | EMIF16 CE2 data space, supports NAND, NOR or SRAM memory <sup>(1</sup>  |
| 7C000000     | 7FFFFFF       | 0 7C000000    | 0 7FFFFFFF    | 64M      | EMIF16 CE3 data space, supports NAND, NOR or SRAM memory <sup>(1)</sup> |
| 80000000     | FFFFFFF       | 8 00000000    | 8 7FFFFFFF    | 2G       | DDR3 EMIF data (2)                                                      |
| End of Table | 2-2           |               |               |          |                                                                         |

#### Manager Man Cumpage (Davt 7 of 7)

1 32MB per chip select for 16-bit NOR and SRAM. 16MB per chip select for 8-bit NOR and SRAM. The 32MB and 16MB size restrictions do not apply to NAND.

2 The memory map shows only the default MPAX configuration of DDR3 memory space. For the extended DDR3 memory space access (up to 8GB), see the MPAX configuration details in C66x CorePac User Guide and Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.

### 2.4 Boot Sequence

The boot sequence is a process by which the DSP's internal memory is loaded with program and data sections. The DSP's internal registers are programmed with predetermined values. The boot sequence is started automatically after each power-on reset, warm reset, and system reset. A local reset to an individual C66x CorePac should not affect the state of the hardware boot controller on the device. For more details on the initiators of the resets, see section 7.5 "Reset Controller" on page 130. The bootloader uses a section of the L2 SRAM (start address 0x0087 2DC0 and end address 0x0087 FFFF) during initial booting of the device. For more details on the type of configurations stored in this reserved L2 section see Table 2-3.

| Start Address (Hex) | Size (Hex Bytes) | Description                                                          |
|---------------------|------------------|----------------------------------------------------------------------|
| 0x00872DC0          | 0x40             | ROM boot version string (Unreserved)                                 |
| 0x00872E00          | 0x400            | Boot code stack                                                      |
| 0x00873200          | 0xE0             | Boot log                                                             |
| 0x008732E0          | 0x20             | Boot progress register stack (copies of boot program on mode change) |
| 0x00873300          | 0x100            | Boot Internal Stats                                                  |
| 0x00873400          | 0x20             | Boot table arguments                                                 |
| 0x00873420          | 0xE0             | ROM boot FAR data                                                    |
| 0x00873500          | 0x100            | DDR configuration table                                              |
| 0x00873600          | 0x80             | RAM table                                                            |
| 0x00873680          | 0x80             | Boot parameter table                                                 |
| 0x00873700          | 0x4900           | Clear text packet scratch                                            |
| 0x00878000          | 0x7F80           | Ethernet/SRIO packet/message/descriptor memory                       |

#### Table 2-3 Bootloader section in L2 SRAM (Part 1 of 2)



SPRS708E—March 2014

| Start Address (Hex) | Size (Hex Bytes) | Description        |  |  |  |
|---------------------|------------------|--------------------|--|--|--|
| 0x0087FF80          | 0x40             | Small stack        |  |  |  |
| 0x0087FFC0          | 0x3C             | Not used           |  |  |  |
| 0x0087FFFC          | 0x4              | Boot magic address |  |  |  |
| End of Table 2-3    |                  |                    |  |  |  |

Table 2-3Bootloader section in L2 SRAM (Part 2 of 2)

The C6672 supports several boot processes that begins execution at the ROM base address, which contains the bootloader code necessary to support various device boot modes. The boot processes are software-driven and use the BOOTMODE[12:0] device configuration inputs to determine the software configuration that must be completed. For more details on Boot Sequence see the *DSP Bootloader for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

### 2.5 Boot Modes Supported and PLL Settings

The device supports several boot processes, which leverage the internal boot ROM. Most boot processes are software driven, using the BOOTMODE[3:0] device configuration inputs to determine the software configuration that must be completed. From a hardware perspective, there are two possible boot modes:

- **Public ROM Boot** C66x CorePac0 is released from reset and begins executing from the L3 ROM base address. After performing the boot process (e.g., from I<sup>2</sup>C ROM, Ethernet, or RapidIO), C66x CorePac0 then begins execution from the provided boot entry point. Other C66x CorePacs are released from reset and begin executing an IDLE from the L3 ROM. They are then released from IDLE based on interrupts generated by C66x CorePac0. See the *DSP Bootloader for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for more details.
- Secure ROM Boot On secure devices, the C66x CorePac0 is released from reset and begin executing from secure ROM. Software in the secure ROM will free up internal RAM pages, after which C66x CorePac0 initiates the boot process. The C66x CorePac0 performs any authentication and decryption required on the bootloaded image prior to beginning execution.

The boot process performed by the C66x CorePac0 in public ROM boot and secure ROM boot are determined by the BOOTMODE[12:0] value in the DEVSTAT register. The C66x CorePac0 reads this value, and then executes the associated boot process in software. Figure 2-2 shows the bits associated with BOOTMODE[12:0].

|       | Boot Mode Pins                                                  |    |   |   |   |   |   |             |   |   |   |   |
|-------|-----------------------------------------------------------------|----|---|---|---|---|---|-------------|---|---|---|---|
| 12    | 11                                                              | 10 | 9 | 8 | 7 | 6 | 5 | 4           | 3 | 2 | 1 | 0 |
| PLL M | PLL Mult I <sup>2</sup> C /SPI Ext Dev Cfg Device Configuration |    |   |   |   |   |   | Boot Device | 2 |   |   |   |

Figure 2-2 Boot Mode Pin Decoding



### 2.5.1 Boot Device Field

The Boot Device field BOOTMODE[2:0] defines the boot device that is chosen. Table 2-4 shows the supported boot modes.

| Bit    | Field       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-0    | Boot Device | <ul> <li>Device boot mode</li> <li>0 = EMIF16 / No Boot</li> <li>1 = Serial Rapid I/O</li> <li>2 = Ethernet (SGMII) (PASS PLL configuration assumes input rate same as CORECLK(P N); BOOTMODE[12:10] values drive the PASS PLL configuration during boot)</li> <li>3 = Ethernet (SGMII) (PASS PLL configuration assumes input rate same as SRIOSGMIICLK(P N); BOOTMODE[9:8] values drive the PASS PLL configuration during boot)</li> <li>4 = PCle</li> <li>5 = I<sup>2</sup>C</li> <li>6 = SPI</li> <li>7 = HyperLink</li> </ul> |
| End of | Table 2-4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 Table 2-4
 Boot Mode Pins: Boot Device Values

Internally, these boot modes are translated by RBL into the extended boot mode value that is used in the boot parameter table. Table 2-5 shows the details of extended boot mode values.

### Table 2-5 Extended Boot Modes

| Boot Type                          | Extended Boot Mode Value (Decimal) |
|------------------------------------|------------------------------------|
| Ethernet Boot Mode                 | 10                                 |
| SRIO Boot Mode                     | 20                                 |
| PCle Boot Mode                     | 30                                 |
| I <sup>2</sup> C Master Boot Mode  | 40                                 |
| I <sup>2</sup> C Passive Boot Mode | 41                                 |
| SPI Boot Mode                      | 50                                 |
| HyperLink Boot Mode                | 60                                 |
| EMIF 16 Boot Mode                  | 70                                 |
| Sleep Boot Mode                    | 100                                |



SPRS708E—March 2014

### 2.5.2 Device Configuration Field

The device configuration fields BOOTMODE[9:3] are used to configure the boot peripheral and, therefore, the bit definitions depend on the boot mode

### 2.5.2.1 No Boot/ EMIF16 Boot Device Configuration

#### Figure 2-3 No Boot/ EMIF16 Configuration Fields

| 9        | 8 | 7           | 7 6 5 4  |      | 3    |          |
|----------|---|-------------|----------|------|------|----------|
| Reserved |   | Wait Enable | Reserved | Sub- | Mode | Reserved |

#### Table 2-6 No Boot / EMIF16 Configuration Field Descriptions

| Bit    | Field       | Description                                                                                                               |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|
| 9-8    | Reserved    | Reserved                                                                                                                  |
| 7      | Wait Enable | Extended Wait mode for EMIF16.<br>0 = Wait enable disabled (EMIF16 sub mode)<br>1 = Wait enable enabled (EMIF16 sub mode) |
| 6      | Reserved    | Reserved                                                                                                                  |
| 5-4    | Sub-Mode    | Sub mode selection.<br>0 = No boot<br>1 = EMIF16 boot<br>2 -3 = Reserved                                                  |
| 3      | Reserved    | Reserved                                                                                                                  |
| End of | Table 2-6   |                                                                                                                           |

### 2.5.2.2 Serial Rapid I/O Boot Device Configuration

The device ID is always set to 0xff (8-bit node IDs) or 0xfff (16 bit node IDs) at power-on reset.

#### Figure 2-4 Serial Rapid I/O Device Configuration Fields

| 9          | 8         | 7 | 6   | 5     | 4        | 3 |
|------------|-----------|---|-----|-------|----------|---|
| Lane Setup | Data Rate |   | Ref | Clock | Reserved |   |

#### Table 2-7 Serial Rapid I/O Configuration Field Descriptions

| Bit    | Field      | Description                                                                                                                                                                                     |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9      | Lane Setup | <ul> <li>SRIO port and lane configuration</li> <li>0 = Port Configured as 4 ports each 1 lane wide (4 -1× ports)</li> <li>1 = Port Configured as 2 ports 2 lanes wide (2 - 2× ports)</li> </ul> |
| 8-7    | Data Rate  | SRIO data rate configuration<br>0 = 1.25 GBaud<br>1 = 2.5 GBaud<br>2 = 3.125 GBaud<br>3 = 5.0 GBaud                                                                                             |
| 6-5    | Ref Clock  | SRIO reference clock configuration<br>0 = 156.25 MHz<br>1 = 250 MHz<br>2 = 312.5 MHz<br>3 = Reserved                                                                                            |
| 4-3    | Reserved   | Reserved                                                                                                                                                                                        |
| End of | Table 2-7  |                                                                                                                                                                                                 |



In SRIO boot mode, the message mode will be enabled by default. If use of the memory reserved for received messages is required and reception of messages cannot be prevented, the master can disable the message mode by writing to the boot table and generating a boot restart.

#### 2.5.2.3 Ethernet (SGMII) Boot Device Configuration

#### Figure 2-5 Ethernet (SGMII) Device Configuration Fields

| 9                 | 8 | 7              | 6 | 5         | 4 | 3 |  |
|-------------------|---|----------------|---|-----------|---|---|--|
| SerDes Clock Mult |   | Ext connection |   | Device ID |   |   |  |

#### Table 2-8 Ethernet (SGMII) Configuration Field Descriptions

| Bit    | Field             | Description                                                                                                                                                                                                     |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9-8    | SerDes Clock Mult | SGMII SerDes input clock. The output frequency of the PLL must be 1.25 GBs.<br>0 = ×8 for input clock of 156.25 MHz<br>1 = ×5 for input clock of 250 MHz<br>2 = ×4 for input clock of 312.5 MHz<br>3 = Reserved |
| 7-6    | Ext connection    | External connection mode<br>0 = MAC to MAC connection, master with auto negotiation<br>1 = MAC to MAC connection, slave, and MAC to PHY<br>2 = MAC to MAC, forced link<br>3 = MAC to fiber connection           |
| 5-3    | Device ID         | This value can range from 0 to 7 is used in the device ID field of the Ethernet-ready frame.                                                                                                                    |
| End of | Table 2-8         |                                                                                                                                                                                                                 |

#### =

**Note**—Both of the SGMII ports have been initialized for boot. The device can boot through either of the ports. If only one SGMII port is used, then the other port will time out before the boot process completes.

#### 2.5.2.4 PCI Boot Device Configuration

Extra device configuration is provided by the PCI bits in the DEVSTAT register.

#### Figure 2-6 PCI Device Configuration Fields

| 9        | 8 | 7   | 6    | 5     | 4 | 3 |
|----------|---|-----|------|-------|---|---|
| Reserved |   | BAR | Rese | erved |   |   |

#### Table 2-9 PCI Device Configuration Field Descriptions

| Bit              | Field      | Description                                         |  |  |
|------------------|------------|-----------------------------------------------------|--|--|
| 9                | Reserved   | Reserved                                            |  |  |
| 8-5              | BAR Config | PCle BAR registers configuration                    |  |  |
|                  |            | This value can range from 0 to 0xf. See Table 2-10. |  |  |
| 4-3              | Reserved   | Reserved                                            |  |  |
| End of Table 2-9 |            |                                                     |  |  |



SPRS708E—March 2014

|              |           | 32-Bit Address Translation |      |      |      |               |        | 64-Bit Address Translation |  |
|--------------|-----------|----------------------------|------|------|------|---------------|--------|----------------------------|--|
| BAR cfg      | BARO      | BAR1                       | BAR2 | BAR3 | BAR4 | BAR5          | BAR2/3 | BAR4/5                     |  |
| 0b0000       |           | 32                         | 32   | 32   | 32   |               |        |                            |  |
| 0b0001       |           | 16                         | 16   | 32   | 64   |               |        |                            |  |
| 0b0010       |           | 16                         | 32   | 32   | 64   |               |        |                            |  |
| 0b0011       |           | 32                         | 32   | 32   | 64   |               |        |                            |  |
| 0b0100       |           | 16                         | 16   | 64   | 64   |               |        |                            |  |
| 0b0101       |           | 16                         | 32   | 64   | 64   |               |        |                            |  |
| 0b0110       |           | 32                         | 32   | 64   | 64   | Clone of BAR4 |        |                            |  |
| 0b0111       | PCIe MMRs | 32                         | 32   | 64   | 128  |               |        |                            |  |
| 0b1000       |           | 64                         | 64   | 128  | 256  |               |        |                            |  |
| 0b1001       |           | 4                          | 128  | 128  | 128  |               |        |                            |  |
| 0b1010       |           | 4                          | 128  | 128  | 256  |               |        |                            |  |
| 0b1011       |           | 4                          | 128  | 256  | 256  |               |        |                            |  |
| 0b1100       |           |                            |      |      |      |               | 256    | 256                        |  |
| 0b1101       |           |                            |      |      |      |               | 512    | 512                        |  |
| 0b1110       |           |                            |      |      |      |               | 1024   | 1024                       |  |
| 0b1111       |           |                            |      |      |      |               | 2048   | 2048                       |  |
| End of Table | 2-10      |                            |      |      |      |               |        |                            |  |

#### Table 2-10 BAR Config / PCIe Window Sizes

## 2.5.2.5 I<sup>2</sup>C Boot Device Configuration

### 2.5.2.5.1 I<sup>2</sup>C Master Mode

In master mode, the  $I^2C$  device configuration uses ten bits of device configuration instead of seven as used in other boot modes. In this mode, the device will make the initial read of the  $I^2C$  EEPROM while the PLL is in bypass mode. The initial read will contain the desired clock multiplier, which will be set up prior to any subsequent reads.

#### Figure 2-7 I<sup>2</sup>C Master Mode Device Configuration Bit Fields

| 12       | 11    | 10      | 9  | 8    | 7 | 6               | 5 | 4 | 3 |  |
|----------|-------|---------|----|------|---|-----------------|---|---|---|--|
| Reserved | Speed | Address | Мо | Mode |   | Parameter Index |   |   |   |  |

Table 2-11I<sup>2</sup>C Master Mode Device Configuration Field Descriptions (Part 1 of 2)

| Bit | Field    | Description                                                                                                                                                                                                                   |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | Reserved | Reserved                                                                                                                                                                                                                      |
| 11  | Speed    | $I^2C$ data rate configuration<br>0 = $I^2C$ slow mode. Initial data rate is CORECLK/5000 until PLLs and clocks are programmed<br>1 = $I^2C$ fast mode. Initial data rate is CORECLK/250 until PLLs and clocks are programmed |
| 10  | Address  | $I^{2}C$ bus address configuration<br>0 = Boot from $I^{2}C$ EEPROM at $I^{2}C$ bus address 0x50<br>1 = Boot from $I^{2}C$ EEPROM at $I^{2}C$ bus address 0x51                                                                |

| Bit    | Field                 | Description                                                                                                                                                                                                                                          |  |  |  |  |  |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 9-8    | Mode                  | I <sup>2</sup> C operation mode<br>0 = Master mode<br>3 = Passive mode (see section 2.5.2.5.2 "I2C Passive Mode")<br>Others = Reserved                                                                                                               |  |  |  |  |  |
| 7-3    | Parameter Table Index | Specifies which parameter table is loaded from $1^2$ C EEPROM. The boot ROM reads the parameter table (each table is 0x80 bytes) from the $1^2$ C EEPROM starting at $1^2$ C address (0x80 * parameter index).<br>This value can range from 0 to 31. |  |  |  |  |  |
| End of | Table 2-11            | End of Table 2-11                                                                                                                                                                                                                                    |  |  |  |  |  |

 Table 2-11
 I<sup>2</sup>C Master Mode Device Configuration Field Descriptions (Part 2 of 2)

### 2.5.2.5.2 $I^2$ C Passive Mode

In passive mode, the device does not drive the clock, but simply acks data received on the specified address.

Figure 2-8 I<sup>2</sup>C Passive Mode Device Configuration Bit Fields

| 9    | 8 | 7                                | 6 | 5 | 4        | 3 |
|------|---|----------------------------------|---|---|----------|---|
| Mode |   | Receive I <sup>2</sup> C Address |   |   | Reserved |   |

#### Table 2-12 I<sup>2</sup>C Passive Mode Device Configuration Field Descriptions

| Bit    | Field                            | Description                                                                                                                                             |  |  |  |  |
|--------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 9-8    | Mode                             | I <sup>2</sup> C operation mode<br>0 = Master mode (see section 2.5.2.5.1 "I2C Master Mode")<br>3 = Passive mode<br>Others = Reserved                   |  |  |  |  |
| 7-5    | Receive I <sup>2</sup> C Address | I <sup>2</sup> C bus address configuration<br>0 - 7h= The I <sup>2</sup> C Bus address the device will listen to for data                               |  |  |  |  |
|        |                                  | The actual value on the bus is $0x19$ plus the value in bits [7:5]. For Ex. if bits[7:5] = 0 then the device will listen to $I^2C$ bus address $0x19$ . |  |  |  |  |
| 4-3    | Reserved                         | Reserved                                                                                                                                                |  |  |  |  |
| End of | End of Table 2-12                |                                                                                                                                                         |  |  |  |  |

#### 2.5.2.6 SPI Boot Device Configuration

In SPI boot mode, the SPI device configuration uses ten bits of device configuration instead of seven as used in other boot modes.

Figure 2-9 SPI Device Configuration Bit Fields

| 12   | 11 | 10       | 9          | 8    | 7      | 6 | 5         | 4           | 3 |
|------|----|----------|------------|------|--------|---|-----------|-------------|---|
| Mode |    | 4, 5 Pin | Addr Width | Chip | Select |   | Parameter | Table Index |   |

#### Table 2-13 SPI Device Configuration Field Descriptions (Part 1 of 2)

| Bit   | Field | Description                                                                                                                                                                                                                                                                             |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12-11 | Mode  | Clk Pol / Phase<br>0 = Data is output on the rising edge of SPICLK. Input data is latched on the falling edge.<br>1 = Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data<br>is latched on the rising edge of SPICLK.      |
|       |       | <ul> <li>2 = Data is output on the falling edge of SPICLK. Input data is latched on the rising edge.</li> <li>3 = Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK.</li> </ul> |

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor





| Bit    | Field                                                            | Description                                                                                                                                                                          |  |  |  |  |
|--------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 10     | 4, 5 Pin                                                         | SPI operation mode configuration<br>0 = 4-pin mode used<br>1 = 5-pin mode used                                                                                                       |  |  |  |  |
| 9      | Addr Width                                                       | SPI address width configuration<br>0 = 16-bit address values are used<br>1 = 24-bit address values are used                                                                          |  |  |  |  |
| 8-7    | Chip Select                                                      | The chip select field value<br>00b = CS0 and CS1 are both active (not used)<br>01b = CS1 is active<br>10b = CS0 is active<br>11b = None is active                                    |  |  |  |  |
| 6-3    | Parameter Table Index                                            | Specifies which parameter table is loaded from SPI. The boot ROM reads the parameter table (each table is 0x80 bytes) from the SPI starting at SPI address (0x80 * parameter index). |  |  |  |  |
| End of | Image: The value can range from 0 to 15.       End of Table 2-13 |                                                                                                                                                                                      |  |  |  |  |

#### Table 2-13 SPI Device Configuration Field Descriptions (Part 2 of 2)

### 2.5.2.7 HyperLink Boot Device Configuration

#### Figure 2-10 HyperLink Boot Device Configuration Fields

| 9        | 8 | 7 | 6   | 5     | 4 | 3     |
|----------|---|---|-----|-------|---|-------|
| Reserved |   |   | Ref | Clock |   | erved |

| Table 2-14 | HyperLink Boot Device Configuration Field Descriptions |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

| Bit   | Field        | Description                                                                                               |
|-------|--------------|-----------------------------------------------------------------------------------------------------------|
| 9     | Reserved     | Reserved                                                                                                  |
| 8-7   | Data Rate    | HyperLink data rate configuration<br>0 = 1.25 GBaud<br>1 = 3.125 GBaud<br>2 = 6.25 GBaud<br>3 = Reserved  |
| 6-5   | Ref Clocks   | HyperLink reference clock configuration<br>0 = 156.25 MHz<br>1 = 250 MHz<br>2 = 312.5 MHz<br>3 = Reserved |
| 4-3   | Reserved     | Reserved                                                                                                  |
| End o | f Table 2-14 |                                                                                                           |

### 2.5.3 Boot Parameter Table

The ROM Bootloader (RBL) uses a set of tables to carry out the boot process. The boot parameter table is the most common format the RBL employs to determine the boot flow. These boot parameter tables have certain parameters common across all the boot modes, while the rest of the parameters are unique to the boot modes. The common entries in the boot parameter table are shown in the table below:

| Byte<br>Offset | Name             | Description                                                                                                                                           |  |  |  |  |
|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0              | Length           | The length of the table, including the length field, in bytes.                                                                                        |  |  |  |  |
| 2              | Checksum         | The 16 bits ones complement of the ones complement of the entire table. A value of 0 will disable checksum verification of the table by the boot ROM. |  |  |  |  |
| 4              | Boot Mode        | Internal values used by RBL for different boot modes.                                                                                                 |  |  |  |  |
| 6              | Port Num         | Identifies the device port number to boot from, if applicable                                                                                         |  |  |  |  |
| 8              | SW PLL, MSW      | PLL configuration, MSW                                                                                                                                |  |  |  |  |
| 10             | SW PLL, LSW      | PLL configuration, LSW                                                                                                                                |  |  |  |  |
| End of Ta      | nd of Table 2-15 |                                                                                                                                                       |  |  |  |  |

 Table 2-15
 Boot Parameter Table Common Parameters

#### 2.5.3.1 EMIF16 Boot Parameter Table

#### Table 2-16 EMIF16 Boot Mode Parameter Table

| Byte<br>Offset | Name               | Description                                                                             | Configured Through Boot<br>Configuration Pins |  |  |  |  |
|----------------|--------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| 12             | Options            | Option for EMIF16 boot (currently none)                                                 | -                                             |  |  |  |  |
| 14             | Туре               | Boot only from NOR flash is supported for C6672                                         | -                                             |  |  |  |  |
| 16             | Branch Address MSW | Most significant bit for Branch address (depends on chip select)                        | -                                             |  |  |  |  |
| 18             | Branch Address LSW | Least significant bit for Branch address (depends on chip select)                       | -                                             |  |  |  |  |
| 20             | Chip Select        | Chip Select for the NOR flash                                                           | -                                             |  |  |  |  |
| 22             | Memory Width       | Memory width of the Emif16 bus (16 bits)                                                | -                                             |  |  |  |  |
| 24             | Wait Enable        | Extended wait mode enabled<br>0 = Wait enable is disabled<br>1 = Wait enable is enabled | YES                                           |  |  |  |  |
| End of T       | End of Table 2-16  |                                                                                         |                                               |  |  |  |  |



\_\_\_\_\_

#### 2.5.3.2 SRIO Boot Parameter Table

#### Table 2-17 SRIO Boot Mode Parameter Table

| Byte<br>Offset | Name           | Description                                                                                                                                                                                                                                              | Configured Through Boot<br>Configuration Pins                                          |
|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 12             | Options        | Bit 0 TX enable0 = SRIO transmit disable1 = SRIO transmit enableBit 1 Mailbox enable0 = Mailbox mode disabled. SRIO boot is in directIO mode).1 = Mailbox mode enabled. SRIO boot is in messaging mode).Bit 2 Bypass configuration0 = Configure the SRIO |                                                                                        |
|                |                | 1 = Bypass SRIO configuration<br>Bit 15-3 = Reserved                                                                                                                                                                                                     |                                                                                        |
| 14             | Lane Setup     | SRIO lane setup<br>0 = SRIO configured as 4 1x ports<br>1 = SRIO configured as 3 ports (2x, 1x, 1x)<br>2 = SRIO configured as 3 ports (1x, 1x, 2x)<br>3 = SRIO configured as 2 ports (2x, 2x)<br>4 = SRIO configured as 1 4x port<br>Others = Reserved   | YES<br>(but not all lane setup are<br>possible through the boot<br>configuration pins) |
| 16             | Config Index   | Specifies the template used for RapidIO configuration.<br>Must be 0 for KeyStone architecture                                                                                                                                                            | -                                                                                      |
| 18             | Node ID        | The node ID value to set for this device                                                                                                                                                                                                                 | -                                                                                      |
| 20             | SerDes ref clk | The SerDes reference clock frequency, in 1/100 MHz                                                                                                                                                                                                       | YES                                                                                    |
| 22             | Link Rate      | Link rate, MHz                                                                                                                                                                                                                                           | YES                                                                                    |
| 24             | PF Low         | Packet forward address range, low value                                                                                                                                                                                                                  | -                                                                                      |
| 26             | PF High        | Packet forward address range, high value                                                                                                                                                                                                                 | -                                                                                      |
| End of T       | able 2-17      |                                                                                                                                                                                                                                                          |                                                                                        |

#### 2.5.3.3 Ethernet Boot Parameter Table

### Table 2-18 Ethernet Boot Mode Parameter Table (Part 1 of 2)

| Byte<br>Offset | Name     | Description                                                                                                                                                                                        | Configured Through Boot<br>Configuration Pins |
|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 12             | Options  | Bits 2-0 Interface<br>101b = SGMII<br>Others = Reserved                                                                                                                                            | -                                             |
|                |          | Bit 3 Half or Full duplex<br>0 = Half Duplex<br>1 = Full Duplex                                                                                                                                    |                                               |
|                |          | Bit 4 Skip TX<br>0 = Send Ethernet ready frame every 3 seconds<br>1 = Don't send Ethernet ready frame                                                                                              |                                               |
|                |          | Bits 6-5 Initialize config<br>00b = Switch, SerDes, SGMII and PASS are configured<br>01b = Only SGMII and PASS are configured<br>10b= Reserved<br>11b = None of the Ethernet system is configured. |                                               |
|                |          | Bits 15-7 = Reserved                                                                                                                                                                               |                                               |
| 14             | MAC High | The 16 MSBs of the MAC address to receive during boot                                                                                                                                              | -                                             |
| 16             | MAC Med  | The 16 middle bits of the MAC address to receive during boot                                                                                                                                       | -                                             |



| Byte<br>Offset | Name               | Description                                                                                         | Configured Through Boot<br>Configuration Pins |
|----------------|--------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 18             | MAC Low            | The 16 LSBs of the MAC address to receive during boot                                               | -                                             |
| 20             | Multi MAC High     | The 16 MSBs of the multi-cast MAC address to receive during boot                                    | -                                             |
| 22             | Multi MAC Med      | The 16 middle bits of the multi-cast MAC address to receive during boot                             | -                                             |
| 24             | Multi MAC Low      | The 16 LSBs of the multi-cast MAC address to receive during boot                                    | -                                             |
| 26             | Source Port        | The source UDP port to accept boot packets from.                                                    | -                                             |
|                |                    | A value of 0 will accept packets from any UDP port                                                  |                                               |
| 28             | Dest Port          | The destination port to accept boot packets on.                                                     | -                                             |
| 30             | Device ID 12       | The first two bytes of the device ID.                                                               | -                                             |
|                |                    | This is typically a string value, and is sent in the Ethernet ready frame                           |                                               |
| 32             | Device ID 34       | The 2nd two bytes of the device ID.                                                                 | -                                             |
| 34             | Dest MAC High      | The 16 MSBs of the MAC destination address used for the Ethernet ready frame. Default is broadcast. | -                                             |
| 36             | Dest MAC Med       | The 16 middle bits of the MAC destination address                                                   | -                                             |
| 38             | Dest MAC Low       | The 16 LSBs of the MAC destination address                                                          | -                                             |
| 40             | SGMII Config       | Bits 3-0 are the config index                                                                       | -                                             |
|                |                    | Bit 4 set if direct config used                                                                     |                                               |
|                |                    | Bit 5 set if no configuration done                                                                  |                                               |
|                |                    | Bits 15-6 Reserved                                                                                  |                                               |
| 42             | SGMII Control      | The SGMII control register value                                                                    | -                                             |
| 44             | SGMII Adv Ability  | The SGMII ADV Ability register value                                                                | -                                             |
| 46             | SGMII TX Cfg High  | The 16 MSBs of the SGMII TX config register                                                         | -                                             |
| 48             | SGMII TX Cfg Low   | The 16 LSBs of the SGMII TX config register                                                         | -                                             |
| 50             | SGMII RX Cfg High  | The 16 MSBs of the SGMII RX config register                                                         | -                                             |
| 52             | SGMII RX Cfg Low   | The 16 LSBs of the SGMII RX config register                                                         | -                                             |
| 54             | SGMII Aux Cfg High | The 16 MSBs of the SGMII Aux config register                                                        | -                                             |
| 56             | SGMII Aux Cfg Low  | The 16 LSBs of the SGMII Aux config register                                                        | -                                             |
| 58             | PKT PLL Cfg MSW    | The packet subsystem PLL configuration, MSW                                                         | -                                             |
| 60             | PKT PLL CFG LSW    | The packet subsystem PLL configuration, LSW                                                         | -                                             |
| End of Ta      | ble 2-18           |                                                                                                     |                                               |

### Table 2-18 Ethernet Boot Mode Parameter Table (Part 2 of 2)





### 2.5.3.4 PCIe Boot Parameter Table

#### Table 2-19 PCIe Boot Mode Parameter Table

| Byte<br>Offset | Name                  | Description                                                                                                                                                                                                                                                                             | Configured Through Boot<br>Configuration Pins |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 12             | Options               | Bit 0 Mode                                                                                                                                                                                                                                                                              | -                                             |
|                |                       | 0 = Host mode (direct boot mode)                                                                                                                                                                                                                                                        |                                               |
|                |                       | 1 = Boot table boot mode                                                                                                                                                                                                                                                                |                                               |
|                |                       | Bit 1 Configuration of PCIe<br>0 = PCIe is configured by RBL                                                                                                                                                                                                                            |                                               |
|                |                       | 1 = PCIe is not configured by RBL                                                                                                                                                                                                                                                       |                                               |
|                |                       | Bits 3-2 Reserved                                                                                                                                                                                                                                                                       |                                               |
|                |                       | Bit 4 Multiplier                                                                                                                                                                                                                                                                        |                                               |
|                |                       | 0 = SerDes PLL configuration is done based on SerDes register values                                                                                                                                                                                                                    |                                               |
|                |                       | 1 = SerDes PLL configuration based on the reference clock values                                                                                                                                                                                                                        |                                               |
|                |                       | Bits 15-5 Reserved                                                                                                                                                                                                                                                                      |                                               |
| 14             | Address Width         | PCI address width, can be 32 or 64                                                                                                                                                                                                                                                      | -                                             |
| 16             | Link Rate             | SerDes frequency, in Mbps. Can be 2500 or 5000                                                                                                                                                                                                                                          | -                                             |
| 18             | Reference clock       | Reference clock frequency, in units of 10 kHz. Value values are 10000 (100 MHz), 12500 (125 MHz), 15625 (156.25 MHz), 25000 (250 MHz), and 31250 (312.5 MHz). A value of 0 means that value is already in the SerDes configuration parameters and will not be computed by the boot ROM. | -                                             |
| 20             | Window 1 Size         | Window 1 size.                                                                                                                                                                                                                                                                          | YES                                           |
| 22             | Window 2 Size         | Window 2 size.                                                                                                                                                                                                                                                                          | YES                                           |
| 24             | Window 3 Size         | Window 3 size. Valid only if address width is 32.                                                                                                                                                                                                                                       | YES                                           |
| 26             | Window 4 Size         | Window 4 Size. Valid only if the address width is 32.                                                                                                                                                                                                                                   | YES                                           |
| 28             | Vendor ID             | Vendor ID                                                                                                                                                                                                                                                                               | -                                             |
| 30             | Device ID             | Device ID                                                                                                                                                                                                                                                                               | -                                             |
| 32             | Class code Rev ID MSW | Class code revision ID MSW                                                                                                                                                                                                                                                              | -                                             |
| 34             | Class code Rev ID LSW | Class code revision ID LSW                                                                                                                                                                                                                                                              | -                                             |
| 36             | SerDes Cfg MSW        | PCle SerDes config word, MSW                                                                                                                                                                                                                                                            | -                                             |
| 38             | SerDes Cfg LSW        | PCIe SerDes config word, LSW                                                                                                                                                                                                                                                            | -                                             |
| 40             | SerDes lane 0 Cfg MSW | SerDes lane config word, MSW, lane 0                                                                                                                                                                                                                                                    | -                                             |
| 42             | SerDes lane 0 Cfg LSW | SerDes lane config word, LSW, lane 0                                                                                                                                                                                                                                                    | -                                             |
| 44             | SerDes lane 1 Cfg MSW | SerDes lane config word, MSW, lane 1                                                                                                                                                                                                                                                    | -                                             |
| 46             | SerDes lane 1 Cfg LSW | SerDes lane config word, LSW, lane 1                                                                                                                                                                                                                                                    | -                                             |
| End of Ta      | ble 2-19              |                                                                                                                                                                                                                                                                                         |                                               |

## 2.5.3.5 I<sup>2</sup>C Boot Parameter Table

#### Table 2-20 I<sup>2</sup>C Boot Mode Parameter Table (Part 1 of 2)

| Byte Offset | Name              | Description                                                                                                                                                  | Configured Through Boot<br>Configuration Pins |
|-------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 12          | Option            | Bits 1-0 Mode<br>00b = Boot Parameter Table Mode<br>01b = Boot Table Mode<br>10b = Boot Config Mode<br>11b = Slave Receive Boot Config<br>Bits 15-2 Reserved | YES                                           |
| 14          | Boot Dev Addr     | The I <sup>2</sup> C device address to boot from                                                                                                             | YES                                           |
| 16          | Boot Dev Addr Ext | Extended boot device address                                                                                                                                 | YES                                           |

| Byte Offset  | Name              | Description                                                                                         | Configured Through Boot<br>Configuration Pins |  |
|--------------|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| 18           | Broadcast Addr    | $I^2C$ address used to send data in the $I^2C$ master broadcast mode.                               | -                                             |  |
| 20           | Local Address     | The I <sup>2</sup> C address of this device                                                         | -                                             |  |
| 22           | Device Freq       | The operating frequency of the device (MHz)                                                         | -                                             |  |
| 24           | Bus Frequency     | The desired I <sup>2</sup> C data rate (kHz)                                                        | YES                                           |  |
| 26           | Next Dev Addr     | The next device address to boot (Used only if boot config option is selected)                       | -                                             |  |
| 28           | Next Dev Addr Ext | The extended next device address to boot (Used only if boot config option is selected)              | -                                             |  |
| 30           | Address Delay     | The number of CPU cycles to delay between writing the address to an $I^2C$ EEPROM and reading data. | -                                             |  |
| End of Table | End of Table 2-20 |                                                                                                     |                                               |  |

### Table 2-20I<sup>2</sup>C Boot Mode Parameter Table (Part 2 of 2)

#### 2.5.3.6 SPI Boot Parameter Table

#### Table 2-21SPI Boot Mode Parameter Table

| Byte Offset  | Name               | Description                                                                                                                                                                                                                                       | Configured Through Boot<br>Configuration Pins |
|--------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 12           | Options            | Bits 1-0 Modes<br>00b = Load a boot parameter table from the SPI (Default mode)<br>01b = Load boot records from the SPI (boot tables)<br>10b = Load boot config records from the SPI (boot config tables)<br>11b = Reserved<br>Bits 15-2 Reserved | -                                             |
| 14           | Address Width      | The number of bytes in the SPI device address. Can be 16 or 24 bit.                                                                                                                                                                               | YES                                           |
| 16           | NPin               | The operational mode, 4 or 5 pin                                                                                                                                                                                                                  | YES                                           |
| 18           | Chipsel            | The chip select used (valid in 4-pin mode only). Can be 0-3.                                                                                                                                                                                      | YES                                           |
| 20           | Mode               | Standard SPI mode (0-3)                                                                                                                                                                                                                           | YES                                           |
| 22           | C2Delay            | Setup time between chip assert and transaction                                                                                                                                                                                                    | -                                             |
| 24           | CPU Freq MHz       | The speed of the CPU, in MHz                                                                                                                                                                                                                      | -                                             |
| 26           | Bus Freq, MHz      | The MHz portion of the SPI bus frequency. Default = 5 MHz                                                                                                                                                                                         | -                                             |
| 28           | Bus Freq, kHz      | The kHz portion of the SPI buf frequency. Default = 0                                                                                                                                                                                             | -                                             |
| 30           | Read Addr MSW      | The first address to read from, MSW (valid for 24-bit address width only)                                                                                                                                                                         | YES                                           |
| 32           | Read Addr LSW      | The first address to read from, LSW                                                                                                                                                                                                               | YES                                           |
| 28           | Next Chip Select   | Next Chip Select to be used (Used only in boot config mode)                                                                                                                                                                                       | -                                             |
| 30           | Next Read Addr MSW | The Next read address (used in boot config mode only)                                                                                                                                                                                             | -                                             |
| 32           | Next Read Addr LSW | The Next read address (used in boot config mode only)                                                                                                                                                                                             | -                                             |
| End of Table | 2-21               |                                                                                                                                                                                                                                                   |                                               |

SPRS708E—March 2014



### 2.5.3.7 HyperLink Boot Parameter Table

#### Table 2-22 HyperLink Boot Mode Parameter Table

| Byte Offset  | Name                         | Description                                                                                                 | Configured Through Boot<br>Configuration Pins |
|--------------|------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 12           | Options                      | Bit 0 Mode<br>0 = Host Mode (Direct boot mode)<br>1 = Boot Table Boot Mode                                  | -                                             |
|              |                              | Bit 1 Configuration of PCIe<br>0 = HyperLink is configured by RBL<br>1 = HyperLink is not configured by RBL |                                               |
|              |                              | Bits 15-2 Reserved                                                                                          |                                               |
| 14           | Number of Lanes              | Number of lanes to be configured                                                                            | -                                             |
| 16           | SerDes cfg msw               | HyperLink SerDes config word, MSW                                                                           | -                                             |
| 18           | SerDes cfg Isw               | HyperLink SerDes config word, LSW                                                                           | -                                             |
| 20           | SerDes CFG RX lane 0 cfg msw | SerDes RX lane config word, MSW lane 0                                                                      | -                                             |
| 22           | SerDes CFG RXlane 0 cfg lsw  | SerDes RX lane config word, LSW, lane 0                                                                     | -                                             |
| 24           | SerDes CFG TX lane 0 cfg msw | SerDes TX lane config word, MSW lane 0                                                                      | -                                             |
| 26           | SerDes CFG TXlane 0 cfg lsw  | SerDes TX lane config word, LSW, lane 0                                                                     | -                                             |
| 28           | SerDes CFG RX lane 1 cfg msw | SerDes RX lane config word, MSW lane 1                                                                      | -                                             |
| 30           | SerDes CFG RXlane 1 cfg lsw  | SerDes RX lane config word, LSW, lane 1                                                                     | -                                             |
| 32           | SerDes CFG TX lane 1 cfg msw | SerDes TX lane config word, MSW lane 1                                                                      | -                                             |
| 34           | SerDes CFG TXlane 1 cfg lsw  | SerDes TX lane config word, LSW, lane 1                                                                     | -                                             |
| 36           | SerDes CFG RX lane 2 cfg msw | SerDes RX lane config word, MSW lane 2                                                                      | -                                             |
| 38           | SerDes CFG RXlane 2 cfg lsw  | SerDes RX lane config word, LSW, lane 2                                                                     | -                                             |
| 40           | SerDes CFG TX lane 2 cfg msw | SerDes TX lane config word, MSW lane 2                                                                      | -                                             |
| 42           | SerDes CFG TXlane 2 cfg lsw  | SerDes TX lane config word, LSW, lane 2                                                                     | -                                             |
| 44           | SerDes CFG RX lane 3 cfg msw | SerDes RX lane config word, MSW lane 3                                                                      | -                                             |
| 46           | SerDes CFG RXIane 3 cfg Isw  | SerDes RX lane config word, LSW, lane 3                                                                     | -                                             |
| 48           | SerDes CFG TX lane 3 cfg msw | SerDes TX lane config word, MSW lane 3                                                                      | -                                             |
| 50           | SerDes CFG TXlane 3 cfg lsw  | SerDes TX lane config word, LSW, lane 3                                                                     | -                                             |
| End of Table | 2-22                         |                                                                                                             |                                               |


### 2.5.3.8 DDR3 Configuration Table

The ROM Bootloader (RBL) also provides an option to configure the DDR table before loading the image into the external memory. More information on how to configure the DDR3, see the *DSP Bootloader for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for more details. The configuration table for DDR3 is shown below:

| Byte Offset  | Name                  | Description                                                                                                  | Configured Through Boot<br>Configuration Pins |
|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 0            | configselect          | Selecting the configuration register below that to be set. Each field below is represented by one bit, each. | -                                             |
| 4            | pllprediv             | PLL pre divider value (Should be the exact value not value -1)                                               | -                                             |
| 8            | pllMult               | PLL Multiplier value (Should be the exact value not value -1)                                                | -                                             |
| 12           | pllPostDiv            | PLL post divider value (Should be the exact value not value -1)                                              | -                                             |
| 16           | sdRamConfig           | SDRAM config register                                                                                        | -                                             |
| 20           | sdRamConfig2          | SDRAM Config register                                                                                        | -                                             |
| 24           | sdRamRefreshctl       | SDRAM Refresh Control Register                                                                               | -                                             |
| 28           | sdRamTiming1          | SDRAM Timing 1 Register                                                                                      | -                                             |
| 32           | sdRamTiming2          | SDRAM Timing 2 Register                                                                                      | -                                             |
| 36           | sdRamTiming3          | SDRAM Timing 3 Register                                                                                      | -                                             |
| 40           | IpDfrNvmTiming        | LP DDR2 NVM Timing Register                                                                                  | -                                             |
| 44           | powerMngCtl           | Power management Control Register                                                                            | -                                             |
| 48           | iODFTTestLogic        | IODFT Test Logic Global Control Register                                                                     | -                                             |
| 52           | performCountCfg       | Performance Counter Config Register                                                                          | -                                             |
| 56           | performCountMstRegSel | Performance Counter Master Region Select Register                                                            | -                                             |
| 60           | readIdleCtl           | Read IDLE counter Register                                                                                   | -                                             |
| 64           | sysVbusmIntEnSet      | System Interrupt Enable Set Register                                                                         | -                                             |
| 68           | sdRamOutImpdedCalcfg  | SDRAM Output Impedance Calibration Config Register                                                           | -                                             |
| 72           | tempAlertCfg          | Temperature Alert Configuration Register                                                                     | -                                             |
| 76           | ddrPhyCtl1            | DDR PHY Control Register 1                                                                                   | -                                             |
| 80           | ddrPhyCtl2            | DDR PHY Control Register 1                                                                                   | -                                             |
| 84           | proClassSvceMap       | Priority to Class of Service mapping Register                                                                | -                                             |
| 88           | mstld2ClsSvce1Map     | Master ID to Class of Service Mapping 1 Register                                                             | -                                             |
| 92           | mstld2ClsSvce2Map     | Master ID to Class of Service Mapping 2Register                                                              | -                                             |
| 96           | eccCtl                | ECC Control Register                                                                                         | -                                             |
| 100          | eccRange1             | ECC Address Range1 Register                                                                                  | -                                             |
| 104          | eccRange2             | ECC Address Range2 Register                                                                                  | -                                             |
| 108          | rdWrtExcThresh        | Read Write Execution Threshold Register                                                                      | -                                             |
| End of Table | 2-23                  |                                                                                                              |                                               |

### Table 2-23 DDR3 Boot Parameter Table



SPRS708E—March 2014

## 2.5.4 PLL Boot Configuration Settings

The PLL default settings are determined by the BOOTMODE[12:10] bits. The table below shows settings for various input clock frequencies.

| ЭE                  | k (                       | 80   | 0 MHz | Device            | 10   | 00 MH | z Device          | 12   | 00 MH | z Device          | 12   | 50 MH | z Device          | 15   | 00 M | Hz Device         | PASS PLL = $350 \text{ MHz}^{(2)}$ |      |                   |
|---------------------|---------------------------|------|-------|-------------------|------|-------|-------------------|------|-------|-------------------|------|-------|-------------------|------|------|-------------------|------------------------------------|------|-------------------|
| BOOTMODE<br>[12:10] | Input Clock<br>Freq (MHz) | PLLD | PLLM  | DSP Freq<br>(MHz) | PLLD | PLLM | DSP Freq<br>(MHz) | PLLD                               | PLLM | DSP Freq<br>(MHz) |
| 0b000               | 50.00                     | 0    | 31    | 800               | 0    | 39    | 1000              | 0    | 47    | 1200              | 0    | 49    | 1250              | 0    | 59   | 1500              | 0                                  | 41   | 1050              |
| 0b001               | 66.67                     | 0    | 23    | 800.04            | 0    | 29    | 1000.05           | 0    | 35    | 1200.06           | 1    | 74    | 1250.06           | 0    | 44   | 1500.075          | 1                                  | 62   | 1050.053          |
| 0b010               | 80.00                     | 0    | 19    | 800               | 0    | 24    | 1000              | 0    | 29    | 1200              | 3    | 124   | 1250              | 1    | 74   | 1500              | 3                                  | 104  | 1050              |
| 0b011               | 100.00                    | 0    | 15    | 800               | 0    | 19    | 1000              | 0    | 23    | 1200              | 0    | 24    | 1250              | 0    | 29   | 1500              | 0                                  | 20   | 1050              |
| 0b100               | 156.25                    | 24   | 255   | 800               | 4    | 63    | 1000              | 24   | 383   | 1200              | 0    | 15    | 1250              | 4    | 95   | 1500              | 24                                 | 335  | 1050              |
| 0b101               | 250.00                    | 4    | 31    | 800               | 0    | 7     | 1000              | 4    | 47    | 1200              | 0    | 9     | 1250              | 0    | 11   | 1500              | 4                                  | 41   | 1050              |
| 0b110               | 312.50                    | 24   | 127   | 800               | 4    | 31    | 1000              | 24   | 191   | 1200              | 0    | 7     | 1250              | 4    | 47   | 1500              | 24                                 | 167  | 1050              |
| 0b111               | 122.88                    | 47   | 624   | 800               | 28   | 471   | 999.989           | 31   | 624   | 1200              | 2    | 60    | 1249.28           | 4    | 121  | 1499.14           | 11                                 | 204  | 1049.6            |
| End of              | End of Table 2-24         |      |       |                   |      |       |                   |      |       |                   |      |       |                   |      |      |                   |                                    |      |                   |

Table 2-24 C66x DSP System PLL Configuration (1)

1 The PLL boot configuration of initial silicon 1.0 may support only 800 MHz, 1000 MHz, and 1200 MHz frequencies by default.

2 The PASS PLL generates 1050 MHz and is internally divided by 3 to supply 350 MHz to the packet accelerator.

OUTPUT DIVIDE is the value of the field of SECCTL[22:19]. This will set the PLL to the maximum clock setting for the device (with OUTPUT\_DIVIDE=1, by default).

 $CLK = CLKIN \times ((PLLM+1) \div ((OUTPUT DIVIDE+1) \times (PLLD+1)))$ 

The configuration for the PASS PLL is also shown. The PASS PLL is configured with these values only if the Ethernet boot mode is selected with the input clock set to match the main PLL clock (not the PASS clock). See Table 2-4 for details on configuring Ethernet boot mode. The output from the PASS PLL goes through an on-chip divider to reduce the operating frequency before reaching the NETCP. The PASS PLL generates 1050 MHz, and after the chip divider (=3), feeds 350 MHz to the NETCP.

The Main PLL is controlled using a PLL controller and a chip-level MMR. The DDR3 PLL and PASS PLL are controlled by chip level MMRs. For details on how to set up the PLL see section 7.6 "Main PLL and PLL Controller" on page 137. For details on the operation of the PLL controller module, see the Phase Locked Loop (PLL) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.

## 2.6 Second-Level Bootloaders

Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader allows for any level of customization to current boot methods as well as the definition of a completely customized boot.



## 2.7 Terminals

### 2.7.1 Package Terminals

Figure 2-11 shows the TMS320C6672CYP ball grid area (BGA) package (bottom view).

### Figure 2-11 CYP 841-Pin BGA Package (Bottom View)



### 2.7.2 Pin Map

Figure 2-13 through Figure 2-16 show the TMS320C6672 pin assignments in four quadrants (A, B, C, and D).

Figure 2-12 Pin Map Quadrants (Bottom View)





### Figure 2-13 Upper Left Quadrant—A (Bottom View)

|    | 1                 | 2                | 3              | 4              | 5        | 6                 | 7        | 8        | 9        | 10             | 11      | 12      | 13             | 14      | 15      |
|----|-------------------|------------------|----------------|----------------|----------|-------------------|----------|----------|----------|----------------|---------|---------|----------------|---------|---------|
| LA | VSS               | DVDD18           | RSV05          | PASSCLKN       | PASSCLKP | SRIOSGMII<br>CLKN | VSS      | PCIERXP1 | PCIERXN1 | VSS            | RIORXNO | RIORXPO | VSS            | RIORXP3 | RIORXN3 |
| АН | DVDD18            | RSV04            | RSV25          | RSV24          | PCIECLKN | VSS               | PCIERXNO | PCIERXPO | VSS      | RIORXN1        | RIORXP1 | VSS     | RIORXP2        | RIORXN2 | VSS     |
| AG | SPISCS0           | SPISCS1          | CORECLKP       | CORECLKN       | PCIECLKP | SRIOSGMII<br>CLKP | VSS      | PCIETXP1 | PCIETXN1 | VSS            | RIOTXN1 | RIOTXP1 | VSS            | RIOTXP2 | RIOTXN2 |
| AF | RSV22             | CORESELO         | RSV20          | VSS            | DVDD18   | VSS               | PCIETXP0 | PCIETXN0 | VSS      | <b>RIOTXN0</b> | RIOTXP0 | VSS     | <b>RIOTXP3</b> | RIOTXN3 | VSS     |
| AE | SPICLK            | BOOT<br>COMPLETE | SYSCLKOUT      | PACLKSEL       | CORESEL3 | CORESEL2          | VSS      | VSS      | VSS      | VDDR2          | VSS     | RSV15   | VSS            | VDDR4   | VSS     |
| AD | UARTRXD           | SPIDIN           | SCL            | CORESEL1       | AVDDA3   | VSS               | VDDT2    | VSS      | VDDT2    | VSS            | VDDT2   | VSS     | VDDT2          | VSS     | VDDT2   |
| AC | UARTTXD           | VSS              | DVDD18         | SDA            | VSS      | AVDDA2            | VSS      | VDDT2    | RSV16    | VDDT2          | VSS     | VDDT2   | VSS            | VDDT2   | VSS     |
| AB | SPIDOUT           | UARTRTS          | UARTCTS        | VSS            | DVDD18   | VSS               | DVDD18   | VSS      | VDDT2    | VSS            | VDDT2   | VSS     | VDDT2          | VSS     | VDDT2   |
| АА | MCMTX<br>FLCLK    | MCMTX<br>PMCLK   | MCMTX<br>FLDAT | MCMTX<br>PMDAT | VSS      | DVDD18            | VSS      | CVDD     | VSS      | CVDD           | VSS     | CVDD    | VSS            | CVDD    | VSS     |
| Y  | MCMREF<br>CLKOUTP | MCMCLKN          | MCMRX<br>PMCLK | MCMRX<br>PMDAT | RSV12    | VSS               | DVDD18   | VSS      | CVDD     | VSS            | CVDD    | VSS     | CVDD           | VSS     | CVDD    |
| w  | MCMREF<br>CLKOUTN | MCMCLKP          | MCMRX<br>FLCLK | MCMRX<br>FLDAT | RSV13    | RSV14             | VSS      | CVDD     | VSS      | CVDD           | VSS     | CVDD1   | VSS            | CVDD1   | VSS     |
| v  | VSS               | VSS              | VSS            | VSS            | VDDR1    | VSS               | VDDT1    | VSS      | CVDD     | VSS            | CVDD    | VSS     | CVDD1          | VSS     | CVDD1   |
| U  | VSS               | MCMRXN0          | VSS            | MCMTXP1        | VSS      | VDDT1             | VSS      | CVDD     | VSS      | CVDD           | VSS     | CVDD1   | VSS            | CVDD1   | VSS     |
| т  | MCMRXN1           | MCMRXP0          | VSS            | MCMTXN1        | MCMTXP2  | VSS               | VDDT1    | VSS      | CVDD     | VSS            | CVDD    | VSS     | CVDD           | VSS     | CVDD    |

| A |  |
|---|--|
|   |  |



| Figure 2-14 | Upper Right Quadrant—B (Bottom View) |
|-------------|--------------------------------------|
| Figure 2-14 | Opper Right Quadrant—B (Bottom View  |

| 16        | 17        | 18        | 19     | 20    | 21     | 22     | 23      | 24      | 25      | 26      | 27      | 28        | 29        | _  |
|-----------|-----------|-----------|--------|-------|--------|--------|---------|---------|---------|---------|---------|-----------|-----------|----|
| VSS       | SGMIIORXP | SGMIIORXN | VSS    | TR15  | TR13   | FSB1   | CLKA1   | TX02    | TR01    | FSA0    | EMU16   | DVDD18    | VSS       | LA |
| SGMII1RXP | SGMII1RXN | VSS       | RSV08  | TX16  | TR16   | TR14   | CLKB1   | TX04    | TR05    | TR00    | EMU18   | RSV01     | DVDD18    | АН |
| VSS       | SGMII0TXP | SGMII0TXN | VSS    | TX14  | TR17   | DVDD18 | FSA1    | TX03    | CLKB0   | FSB0    | EMU15   | EMU14     | EMU12     | AG |
| SGMII1TXP | SGMII1TXN | VSS       | RSV09  | TX17  | TX10   | VSS    | TX07    | TX05    | CLKA0   | DVDD18  | EMU17   | EMU11     | EMU09     | AF |
| VDDR3     | VSS       | VDDT2     | VSS    | TX15  | TX13   | TR10   | TX06    | TX00    | TR07    | VSS     | EMU10   | EMU08     | EMU07     | AE |
| VSS       | VDDT2     | VSS       | RSV17  | HOUT  | TR11   | TX11   | TR02    | TR03    | TX01    | EMU13   | EMU06   | EMU05     | EMU04     | AD |
| VDDT2     | VSS       | VDDT2     | VSS    | POR   | TR12   | TX12   | TR04    | TR06    | EMIFD15 | EMU03   | EMU02   | EMU01     | EMU00     | AC |
| VSS       | VDDT2     | VSS       | DVDD18 | VSS   | DVDD18 | VSS    | EMIFD12 | EMIFD13 | EMIFD09 | EMIFD14 | EMIFD05 | DVDD18    | EMIFD01   | AB |
| CVDD      | VSS       | CVDD      | VSS    | RSV0B | RSV0A  | CVDD   | VSS     | EMIFD10 | EMIFD07 | EMIFD06 | EMIFD04 | VSS       | EMIFD02   | AA |
| VSS       | CVDD      | VSS       | CVDD   | VSS   | CVDD   | VSS    | DVDD18  | EMIFD11 | EMIFD08 | EMIFD03 | EMIFD00 | EMIFA22   | EMIFA21   | Y  |
| CVDD1     | VSS       | CVDD      | VSS    | CVDD  | VSS    | CVDD   | EMIFA20 | EMIFA19 | EMIFA18 | EMIFA17 | EMIFA15 | EMIFA14   | EMIFA16   | w  |
| VSS       | CVDD      | VSS       | CVDD   | VSS   | CVDD   | VSS    | DVDD18  | EMIFA13 | EMIFA12 | EMIFA11 | EMIFA10 | EMIFA08   | EMIFA09   | v  |
| CVDD1     | VSS       | CVDD      | VSS    | CVDD  | VSS    | CVDD   | EMIFA23 | EMIFA07 | EMIFA06 | DVDD18  | EMIFA04 | EMIFA05   | EMIFA02   | U  |
| VSS       | CVDD      | VSS       | CVDD   | VSS   | CVDD   | VSS    | DVDD18  | EMIFA01 | EMIFA03 | VSS     | EMIFA00 | EMIFWAIT1 | EMIFWAITO | т  |

|  | В |
|--|---|
|  |   |



### Figure 2-15 Lower Right Quadrant—C (Bottom View)



| CVDD1           | VSS    | CVDD    | VSS      | CVDD    | VSS      | CVDD    | EMIFBE1 | EMIFBEO  | EMIFCE3   | EMIFOE | EMIFCE1         | EMIFCE2  | TDO      | R |
|-----------------|--------|---------|----------|---------|----------|---------|---------|----------|-----------|--------|-----------------|----------|----------|---|
| VSS             | CVDD   | VSS     | CVDD     | VSS     | CVDD     | VSS     | DVDD18  | EMIFWE   | EMIFCEO   | EMIFRW | TDI             | TRST     | TMS      | Ρ |
| CVDD            | VSS    | CVDD    | VSS      | CVDD1   | VSS      | CVDD1   | RSV03   | RSV02    | RESETFULL | LRESET | RESETSTAT       | DVDD18   | ТСК      | N |
| VSS             | CVDD   | VSS     | CVDD     | VSS     | CVDD1    | VSS     | RSV26   | RSV27    | NMI       | TIMO1  | LRESET<br>NMIEN | VSS      | RESET    | м |
| CVDD            | VSS    | CVDD    | VSS      | CVDD1   | VSS      | CVDD1   | VCNTL0  | ΤΙΜΙΟ    | TIMO0     | TIMI1  | GPIO15          | GPIO11   | GPIO12   | L |
| VSS             | CVDD   | VSS     | CVDD     | VSS     | CVDD     | RSV10   | VCNTL1  | GPIO14   | GPIO13    | GPIO09 | GPIO07          | GPIO08   | GPIO10   | к |
| CVDD            | VSS    | CVDD    | VSS      | CVDD    | VSS      | RSV11   | VCNTL2  | GPIO06   | GPIO04    | GPIO03 | GPIO05          | GPIO01   | GPIO02   | ١ |
| VSS             | CVDD   | VSS     | CVDD     | VSS     | CVDD     | AVDDA1  | VCNTL3  | DVDD18   | GPIO00    | MDCLK  | DDRSL<br>RATE1  | RSV06    | DDRCLKN  | н |
| DVDD15          | VSS    | DVDD15  | VSS      | DVDD15  | VSS      | PTV15   | DVDD15  | VSS      | RSV21     | MDIO   | DDRSL<br>RATE0  | RSV07    | DDRCLKP  | G |
| VSS             | DVDD15 | VSS     | DVDD15   | DDRD25  | DDRD27   | DDRD17  | DDRD16  | DDRD08   | DDRD07    | DVDD15 | VSS             | DVDD15   | VSS      | F |
| DDRA10          | DDRA12 | DDRCKE1 | DDRCB00  | VSS     | DDRD26   | DDRD23  | DDRD19  | DDRD09   | DDRD10    | DDRD06 | DDRD02          | DDRD00   | DDRDQM0  | E |
| DDRA11          | DDRA14 | VSS     | DDRCB02  | DVDD15  | DDRD24   | DDRD28  | DVDD15  | DDRD18   | DDRD11    | DDRD12 | DDRD04          | DDRD03   | DDRD01   | D |
| DDRA13          | DDRA15 | DDRCB05 | DDRCB04  | DDRCB01 | DDRD29   | DDRD31  | VSS     | DDRD22   | DVDD15    | DDRD13 | DDRDQM1         | DDRDQS0P | DDRDQS0N | с |
| DDRCLK<br>OUTN1 | VSS    | DDRCB06 | DDRDQS8N | DDRCB03 | DDRDQS3N | DDRD30  | DDRD21  | DDRDQS2N | VSS       | DDRD14 | DDRDQS1N        | DDRD05   | DVDD15   | В |
| DDRCLK<br>OUTP1 | DVDD15 | DDRCB07 | DDRDQ58P | DDRDQM8 | DDRDQ53P | DDRDQM3 | DDRD20  | DDRDQS2P | DDRDQM2   | DDRD15 | DDRDQS1P        | DVDD15   | VSS      | A |
| 16              | 17     | 18      | 19       | 20      | 21       | 22      | 23      | 24       | 25        | 26     | 27              | 28       | 29       |   |



### Figure 2-16 Lower Left Quadrant—D (Bottom View)

| D |  |
|---|--|

| R | MCMRXP1  | VSS     | VSS      | VSS     | MCMTXN2 | VDDT1    | VSS    | CVDD    | VSS      | CVDD    | VSS      | CVDD1           | VSS     | CVDD1    | VSS    |
|---|----------|---------|----------|---------|---------|----------|--------|---------|----------|---------|----------|-----------------|---------|----------|--------|
| Р | VSS      | MCMRXN3 | VSS      | МСМТХРЗ | VSS     | VSS      | VDDT1  | VSS     | CVDD     | VSS     | CVDD     | VSS             | CVDD    | VSS      | CVDD   |
| N | MCMRXP2  | MCMRXP3 | VSS      | MCMTXN3 | МСМТХРО | VDDT1    | VSS    | CVDD    | VSS      | CVDD    | VSS      | CVDD            | VSS     | CVDD     | VSS    |
| м | MCMRXN2  | VSS     | VSS      | VSS     | MCMTXN0 | VSS      | VDDT1  | VSS     | CVDD1    | VSS     | CVDD     | VSS             | CVDD    | VSS      | CVDD   |
| L | VSS      | VSS     | VSS      | VSS     | VSS     | VSS      | VSS    | CVDD1   | VSS      | CVDD    | VSS      | CVDD            | VSS     | CVDD1    | VSS    |
| к | VSS      | VSS     | VSS      | VSS     | VSS     | VSS      | CVDD1  | VSS     | CVDD1    | VSS     | CVDD     | VSS             | CVDD1   | VSS      | CVDD1  |
| ſ | VSS      | VSS     | VSS      | VSS     | VSS     | VSS      | VSS    | CVDD1   | VSS      | CVDD    | VSS      | CVDD            | VSS     | CVDD1    | VSS    |
| н | VSS      | VSS     | VSS      | VSS     | VSS     | VSS      | CVDD   | VSS     | CVDD     | VSS     | CVDD     | VSS             | CVDD    | VSS      | CVDD   |
| G | VSS      | DVDD15  | VSS      | DVDD15  | VSS     | VSS      | VSS    | DVDD15  | VSS      | DVDD15  | VSS      | DVDD15          | VSS     | DVDD15   | VSS    |
| F | DDRD63   | DDRD60  | DDRD61   | DDRD56  | DVDD15  | VSS      | DVDD15 | VSS     | DVDD15   | VSS     | DVDD15   | VSS             | DDRA03  | DDRA02   | DDRA08 |
| E | DDRD62   | DDRD58  | DVDD15   | DDRD53  | VSS     | DDRD45   | DDRD42 | DDRD39  | DDRD36   | DDRD32  | DDRRESET | DDRWE           | DDRODT1 | VREFSSTL | DDRA09 |
| D | DDRDQS7P | DDRD57  | VSS      | DDRD52  | DVDD15  | DDRD46   | DDRD41 | DVDD15  | DDRD35   | DDRD33  | DDRCKE0  | DDRCAS          | DDRODTO | VSS      | DDRA07 |
| c | DDRDQS7N | DDRD59  | DDRD55   | DDRD54  | DDRD48  | DDRD47   | DDRD43 | VSS     | DDRD37   | DDRRAS  | DDRCEO   | DDRCE1          | DDRBA2  | DVDD15   | DDRA05 |
| в | DVDD15   | DDRDQM7 | DDRDQS6P | DDRD50  | DDRDQM6 | DDRDQS5P | DDRD44 | DDRD38  | DDRDQS4N | DDRD34  | VSS      | DDRCLK<br>OUTN0 | DDRBA1  | DDRA01   | DDRA06 |
| A | VSS      | DVDD15  | DDRDQS6N | DDRD51  | DDRD49  | DDRDQS5N | DDRD40 | DDRDQM5 | DDRDQ54P | DDRDQM4 | DVDD15   | DDRCLK<br>OUTP0 | DDRBA0  | DDRA00   | DDRA04 |
|   | 1        | 2       | 3        | 4       | 5       | 6        | 7      | 8       | 9        | 10      | 11       | 12              | 13      | 14       | 15     |



## 2.8 Terminal Functions

The terminal functions table (Table 2-26) identifies the external signal names, the associated pin (ball) numbers, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and gives functional pin descriptions. This table is arranged by function. The power terminal functions table (Table 2-27) lists the various power supply pins and ground pins and gives functional pin descriptions. Table 2-28 shows all pins arranged by signal name. Table 2-29 shows all pins arranged by ball number.

There are 17 pins that have a secondary function as well as a primary function. The secondary function is indicated with a dagger (†).

For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see section 3.4 "Pullup/Pulldown Resistors" on page 94.

Use the symbol definitions in Table 2-25 when reading Table 2-26.

Table 2-25 I/O Functional Symbol Definitions

| Functional<br>Symbol | Definition                                                                                                                                                                                                                                                                                                                                                                                                                  | Table 2-26<br>Column Heading |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| IPD or IPU           | Internal 100-µA pulldown or pullup is provided for this terminal. In most systems, a 1-k $\Omega$ resistor can<br>be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and<br>situations in which external pulldown/pullup resistors are required, see the <i>Hardware Design Guide for</i><br><i>KeyStone I Devices</i> in "Related Documentation from Texas Instruments" on page 72. | IPD/IPU                      |
| А                    | Analog signal                                                                                                                                                                                                                                                                                                                                                                                                               | Туре                         |
| GND                  | Ground                                                                                                                                                                                                                                                                                                                                                                                                                      | Туре                         |
| I                    | Input terminal                                                                                                                                                                                                                                                                                                                                                                                                              | Туре                         |
| 0                    | Output terminal                                                                                                                                                                                                                                                                                                                                                                                                             | Туре                         |
| S                    | Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                              | Туре                         |
| Z                    | Three-state terminal or high impedance                                                                                                                                                                                                                                                                                                                                                                                      | Туре                         |
| End of Table 2-      | 25                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |

 Table 2-26
 Terminal Functions — Signals and Control by Function (Part 1 of 13)

| Signal Name  | Ball No. | Туре | IPD/IPU | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|----------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |          |      |         | Boot Configuration Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LENDIAN †    | H25      | IOZ  | UP      | Endian configuration pin (Pin shared with GPIO[0])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BOOTMODE00 † | J28      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE01†  | J29      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE02 † | J26      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE03 † | J25      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE04 † | J27      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE05 † | J24      | IOZ  | Down    | Conference of the second state of the second s |
| BOOTMODE06 † | K27      | IOZ  | Down    | See Section 2.5 "Boot Modes Supported and PLL Settings" on page 24 for more details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BOOTMODE07 † | K28      | IOZ  | Down    | (Pins shared with GPIO[1:13])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BOOTMODE08 † | K26      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE09 † | K29      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE10 † | L28      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE11 † | L29      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOOTMODE12 † | K25      | IOZ  | Down    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Table 2-20    |          |      | _       | is and Control by Function (Part 2 of 15)                                                                                                                                                                                                                              |
|---------------|----------|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Name   | Ball No. | Туре | IPD/IPU | Description                                                                                                                                                                                                                                                            |
| PCIESSMODE0 † | K24      | IOZ  | Down    | PCIe Mode selection pins (Pins shared with GPIO[14:15])                                                                                                                                                                                                                |
| PCIESSMODE1 † | L27      | IOZ  | Down    |                                                                                                                                                                                                                                                                        |
| PCIESSEN †    | L24      | I    | Down    | PCIe module enable (Pin shared with TIMI0)                                                                                                                                                                                                                             |
|               |          |      |         | Clock / Reset                                                                                                                                                                                                                                                          |
| CORECLKP      | AG3      | I    |         | Core Clock Input to main PLL.                                                                                                                                                                                                                                          |
| CORECLKN      | AG4      | I    |         |                                                                                                                                                                                                                                                                        |
| SRIOSGMIICLKP | AG6      | I    |         | RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SerDes                                                                                                                                                                                                    |
| SRIOSGMIICLKN | AJ6      | I    |         |                                                                                                                                                                                                                                                                        |
| DDRCLKP       | G29      | I    |         | DDR Reference Clock Input to DDR PLL (                                                                                                                                                                                                                                 |
| DDRCLKN       | H29      | I    |         |                                                                                                                                                                                                                                                                        |
| PCIECLKP      | AG5      | I    |         | PCIa Clack Insult to drive PCIa SerDec                                                                                                                                                                                                                                 |
| PCIECLKN      | AH5      | I    |         | PCle Clock Input to drive PCle SerDes                                                                                                                                                                                                                                  |
| MCMCLKP       | W2       | I    |         | HyperLink Reference Clock to drive the HyperLink SerDes                                                                                                                                                                                                                |
| MCMCLKN       | Y2       | I    |         | HyperLink Reference Clock to drive the HyperLink SerDes                                                                                                                                                                                                                |
| PASSCLKP      | AJ5      | I    |         |                                                                                                                                                                                                                                                                        |
| PASSCLKN      | AJ4      | I    |         | Network Coprocessor (PASS PLL) Reference Clock                                                                                                                                                                                                                         |
| AVDDA1        | H22      | Р    |         | SYS_CLK PLL Power Supply Pin                                                                                                                                                                                                                                           |
| AVDDA2        | AC6      | Р    |         | DDR_CLK PLL Power Supply Pin                                                                                                                                                                                                                                           |
| AVDDA3        | AD5      | Р    |         | PASS_CLK PLL Power Supply Pin                                                                                                                                                                                                                                          |
| SYSCLKOUT     | AE3      | ΟZ   | Down    | System Clock Output to be used as a general purpose output clock for debug purposes                                                                                                                                                                                    |
| PACLKSEL      | AE4      | I    | Down    | PA clock select to choose between core clock and PASSCLK pins                                                                                                                                                                                                          |
| HOUT          | AD20     | ΟZ   | UP      | Interrupt output pulse created by IPCGRH                                                                                                                                                                                                                               |
| NMI           | M25      | I    | UP      | Non-maskable Interrupt                                                                                                                                                                                                                                                 |
| LRESET        | N26      | I    | UP      | Warm Reset                                                                                                                                                                                                                                                             |
| LRESETNMIEN   | M27      | I    | UP      | Enable for core selects                                                                                                                                                                                                                                                |
| CORESELO      | AF2      | I    | Down    |                                                                                                                                                                                                                                                                        |
| CORESEL1      | AD4      | I    | Down    | Select for the target core for LRESET and NMI. For more details see Table 7-46"NMI and Local Reset                                                                                                                                                                     |
| CORESEL2      | AE6      | I    | Down    | Timing Requirements" on page 183                                                                                                                                                                                                                                       |
| CORESEL3      | AE5      | I    | Down    |                                                                                                                                                                                                                                                                        |
| RESETFULL     | N25      | I    | UP      | Full Reset                                                                                                                                                                                                                                                             |
| RESET         | M29      | I    | UP      | Warm Reset of non isolated portion on the IC                                                                                                                                                                                                                           |
| POR           | AC20     | I    |         | Power-on Reset                                                                                                                                                                                                                                                         |
| RESETSTAT     | N27      | 0    | UP      | Reset Status Output                                                                                                                                                                                                                                                    |
| BOOTCOMPLETE  | AE2      | ΟZ   | Down    | Boot progress indication output                                                                                                                                                                                                                                        |
| PTV15         | G22      | A    |         | PTV Compensation NMOS Reference Input. A precision resistor placed between the PTV15 pin and ground is used to closely tune the output impedance of the DDR interface drivers to 50 $\Omega$ . Presently the recommended value for this 1% resistor is 45.3 $\Omega$ . |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 2 of 13)



SPRS708E—March 2014

| Signal Name | Ball No. | Туре | IPD/IPU | Description          |
|-------------|----------|------|---------|----------------------|
|             |          |      |         | DDR                  |
| DDRDQM0     | E29      | OZ   |         |                      |
| DDRDQM1     | C27      | OZ   |         |                      |
| DDRDQM2     | A25      | ΟZ   |         |                      |
| DDRDQM3     | A22      | ΟZ   |         |                      |
| DDRDQM4     | A10      | ΟZ   |         | DDR EMIF Data Masks  |
| DDRDQM5     | A8       | ΟZ   |         |                      |
| DDRDQM6     | B5       | ΟZ   |         |                      |
| DDRDQM7     | B2       | ΟZ   |         |                      |
| DDRDQM8     | A20      | ΟZ   |         |                      |
| DDRDQS0P    | C28      | IOZ  |         |                      |
| DDRDQS0N    | C29      | IOZ  |         |                      |
| DDRDQS1P    | A27      | IOZ  |         |                      |
| DDRDQS1N    | B27      | IOZ  |         |                      |
| DDRDQS2P    | A24      | IOZ  |         |                      |
| DDRDQS2N    | B24      | IOZ  |         |                      |
| DDRDQS3P    | A21      | IOZ  |         |                      |
| DDRDQS3N    | B21      | IOZ  |         |                      |
| DDRDQS4P    | A9       | IOZ  |         | DDR EMIF Data Strobe |
| DDRDQS4N    | B9       | IOZ  |         |                      |
| DDRDQS5P    | B6       | IOZ  |         |                      |
| DDRDQS5N    | A6       | IOZ  |         |                      |
| DDRDQS6P    | B3       | IOZ  |         |                      |
| DDRDQS6N    | A3       | IOZ  |         |                      |
| DDRDQS7P    | D1       | IOZ  |         |                      |
| DDRDQS7N    | C1       | IOZ  |         |                      |
| DDRDQS8P    | A19      | IOZ  |         |                      |
| DDRDQS8N    | B19      | IOZ  |         |                      |
| DDRCB00     | E19      | IOZ  |         |                      |
| DDRCB01     | C20      | IOZ  |         |                      |
| DDRCB02     | D19      | IOZ  |         |                      |
| DDRCB03     | B20      | IOZ  |         |                      |
| DDRCB04     | C19      | IOZ  |         | DDR EMIF Check Bits  |
| DDRCB05     | C18      | IOZ  |         |                      |
| DDRCB06     | B18      | IOZ  |         |                      |
| DDRCB07     | A18      | IOZ  |         |                      |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 3 of 13)



| Table 2-26 T | erminal Fu | nctions | s — Signa | ls and Control by Function (Part 4 of 13) |
|--------------|------------|---------|-----------|-------------------------------------------|
| Signal Name  | Ball No.   | Туре    | IPD/IPU   | Description                               |
| DDRD00       | E28        | IOZ     |           |                                           |
| DDRD01       | D29        | IOZ     |           |                                           |
| DDRD02       | E27        | IOZ     |           |                                           |
| DDRD03       | D28        | IOZ     |           |                                           |
| DDRD04       | D27        | IOZ     |           |                                           |
| DDRD05       | B28        | IOZ     |           |                                           |
| DDRD06       | E26        | IOZ     |           |                                           |
| DDRD07       | F25        | IOZ     |           |                                           |
| DDRD08       | F24        | IOZ     |           |                                           |
| DDRD09       | E24        | IOZ     |           |                                           |
| DDRD10       | E25        | IOZ     |           | DDR EMIF Data Bus                         |
| DDRD11       | D25        | IOZ     |           |                                           |
| DDRD12       | D26        | IOZ     |           |                                           |
| DDRD13       | C26        | IOZ     |           |                                           |
| DDRD14       | B26        | IOZ     |           |                                           |
| DDRD15       | A26        | IOZ     |           |                                           |
| DDRD16       | F23        | IOZ     |           |                                           |
| DDRD17       | F22        | IOZ     |           |                                           |
| DDRD18       | D24        | IOZ     |           |                                           |
| DDRD19       | E23        | IOZ     |           |                                           |
| DDRD20       | A23        | IOZ     |           |                                           |
| DDRD21       | B23        | IOZ     |           |                                           |
| DDRD22       | C24        | IOZ     |           | DDR EMIF Data Bus                         |
| DDRD23       | E22        | IOZ     |           |                                           |
| DDRD24       | D21        | IOZ     |           |                                           |
| DDRD25       | F20        | IOZ     |           |                                           |
| DDRD26       | E21        | IOZ     |           |                                           |
| DDRD27       | F21        | IOZ     |           |                                           |
| DDRD28       | D22        | IOZ     |           |                                           |
| DDRD29       | C21        | IOZ     |           |                                           |
| DDRD30       | B22        | IOZ     |           |                                           |
| DDRD31       | C22        | IOZ     |           |                                           |
| DDRD32       | E10        | IOZ     |           |                                           |
| DDRD33       | D10        | IOZ     |           |                                           |
| DDRD34       | B10        | IOZ     |           |                                           |
| DDRD35       | D9         | IOZ     |           |                                           |
| DDRD36       | E9         | IOZ     |           |                                           |
| DDRD37       | С9         | IOZ     |           |                                           |
| DDRD38       | B8         | IOZ     |           |                                           |
| DDRD39       | E8         | IOZ     |           |                                           |
| DDRD40       | A7         | IOZ     |           |                                           |
| DDRD41       | D7         | IOZ     |           |                                           |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 4 of 13)





|             |          |      | Joigha  |                       |
|-------------|----------|------|---------|-----------------------|
| Signal Name | Ball No. | Туре | IPD/IPU | Description           |
| DDRD42      | E7       | IOZ  |         |                       |
| DDRD43      | C7       | IOZ  |         |                       |
| DDRD44      | B7       | IOZ  |         |                       |
| DDRD45      | E6       | IOZ  |         |                       |
| DDRD46      | D6       | IOZ  |         |                       |
| DDRD47      | C6       | IOZ  |         |                       |
| DDRD48      | C5       | IOZ  |         |                       |
| DDRD49      | A5       | IOZ  |         |                       |
| DDRD50      | B4       | IOZ  |         |                       |
| DDRD51      | A4       | IOZ  |         |                       |
| DDRD52      | D4       | IOZ  |         |                       |
| DDRD53      | E4       | IOZ  |         | DDR EMIF Data Bus     |
| DDRD54      | C4       | IOZ  |         |                       |
| DDRD55      | C3       | IOZ  |         |                       |
| DDRD56      | F4       | IOZ  |         |                       |
| DDRD57      | D2       | IOZ  |         |                       |
| DDRD58      | E2       | IOZ  |         |                       |
| DDRD59      | C2       | IOZ  |         |                       |
| DDRD60      | F2       | IOZ  |         |                       |
| DDRD61      | F3       | IOZ  |         |                       |
| DDRD62      | E1       | IOZ  |         |                       |
| DDRD63      | F1       | IOZ  |         |                       |
| DDRCE0      | C11      | OZ   |         |                       |
| DDRCE1      | C12      | OZ   |         | DDR EMIF Chip Enables |
| DDRBA0      | A13      | OZ   |         |                       |
| DDRBA1      | B13      | OZ   |         | DDR EMIF Bank Address |
| DDRBA2      | C13      | OZ   |         |                       |
| DDRA00      | A14      | OZ   |         |                       |
| DDRA01      | B14      | OZ   |         |                       |
| DDRA02      | F14      | OZ   |         |                       |
| DDRA03      | F13      | OZ   |         |                       |
| DDRA04      | A15      | OZ   |         |                       |
| DDRA05      | C15      | OZ   |         |                       |
| DDRA06      | B15      | OZ   |         |                       |
| DDRA07      | D15      | ΟZ   |         |                       |
| DDRA08      | F15      | ΟZ   |         | DDR EMIF Address Bus  |
| DDRA09      | E15      | OZ   |         |                       |
| DDRA10      | E16      | OZ   |         |                       |
| DDRA11      | D16      | ΟZ   |         |                       |
| DDRA12      | E17      | ΟZ   |         |                       |
| DDRA13      | C16      | ΟZ   |         |                       |
| DDRA14      | D17      | OZ   |         |                       |
| DDRA15      | C17      | ΟZ   |         |                       |
|             | 1        | l    | l       | 1                     |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 5 of 13)



| Signal Name | Ball No. | Туре | IPD/IPU | Description                                                                           |  |
|-------------|----------|------|---------|---------------------------------------------------------------------------------------|--|
| DDRCAS      | D12      | OZ   |         | DDR EMIF Column Address Strobe                                                        |  |
| DDRRAS      | C10      | OZ   |         | DDR EMIF Row Address Strobe                                                           |  |
| DDRWE       | E12      | OZ   |         | DDR EMIF Write Enable                                                                 |  |
| DDRCKE0     | D11      | ΟZ   |         | DDR EMIF Clock Enable                                                                 |  |
| DDRCKE1     | E18      | OZ   |         | DDR EMIF Clock Enable                                                                 |  |
| DDRCLKOUTP0 | A12      | ΟZ   |         |                                                                                       |  |
| DDRCLKOUTN0 | B12      | ΟZ   |         | DDR FMIE O three Clashe to this CDRAMA (and the least on a CDRAM)                     |  |
| DDRCLKOUTP1 | A16      | OZ   |         | <ul> <li>DDR EMIF Output Clocks to drive SDRAMs (one clock pair per SDRAM)</li> </ul> |  |
| DDRCLKOUTN1 | B16      | OZ   |         |                                                                                       |  |
| DDRODT0     | D13      | ΟZ   |         | DDR EMIF On Die Termination Outputs used to set termination on the SDRAMs             |  |
| DDRODT1     | E13      | OZ   |         | DDR EMIF On Die Termination Outputs used to set termination on the SDRAMs             |  |
| DDRRESET    | E11      | OZ   |         | DDR Reset signal                                                                      |  |
| DDRSLRATE0  | G27      | I    | Down    |                                                                                       |  |
| DDRSLRATE1  | H27      | I    | Down    | DDR Slew rate control                                                                 |  |
| VREFSSTL    | E14      | Р    |         | Reference Voltage Input for SSTL15 buffers used by DDR EMIF (VDDS15 $\div$ 2)         |  |
|             |          |      |         | EMIF16                                                                                |  |
| EMIFRW      | P26      | OZ   | UP      |                                                                                       |  |
| EMIFCE0     | P25      | OZ   | UP      |                                                                                       |  |
| EMIFCE1     | R27      | OZ   | UP      |                                                                                       |  |
| EMIFCE2     | R28      | OZ   | UP      |                                                                                       |  |
| EMIFCE3     | R25      | OZ   | UP      |                                                                                       |  |
| EMIFOE      | R26      | OZ   | UP      | EMIF16 Control Signals                                                                |  |
| EMIFWE      | P24      | ΟZ   | UP      |                                                                                       |  |
| EMIFBEO     | R24      | OZ   | UP      |                                                                                       |  |
| EMIFBE1     | R23      | OZ   | UP      |                                                                                       |  |
| EMIFWAITO   | T29      | I    | Down    |                                                                                       |  |
| EMIFWAIT1   | T28      | I    | Down    |                                                                                       |  |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 6 of 13)

SPRS708E—March 2014



| Table 2-26  | criminal i u |      | Jigila  | is and Control by Function (Part 7 of 13) |
|-------------|--------------|------|---------|-------------------------------------------|
| Signal Name | Ball No.     | Туре | IPD/IPU | Description                               |
| EMIFA00     | T27          | OZ   | Down    |                                           |
| EMIFA01     | T24          | ΟZ   | Down    |                                           |
| EMIFA02     | U29          | OZ   | Down    |                                           |
| EMIFA03     | T25          | OZ   | Down    |                                           |
| EMIFA04     | U27          | ΟZ   | Down    |                                           |
| EMIFA05     | U28          | OZ   | Down    |                                           |
| EMIFA06     | U25          | ΟZ   | Down    |                                           |
| EMIFA07     | U24          | ΟZ   | Down    |                                           |
| EMIFA08     | V28          | ΟZ   | Down    |                                           |
| EMIFA09     | V29          | ΟZ   | Down    |                                           |
| EMIFA10     | V27          | ΟZ   | Down    |                                           |
| EMIFA11     | V26          | OZ   | Down    | EMIF16 Address                            |
| EMIFA12     | V25          | ΟZ   | Down    |                                           |
| EMIFA13     | V24          | ΟZ   | Down    |                                           |
| EMIFA14     | W28          | ΟZ   | Down    |                                           |
| EMIFA15     | W27          | ΟZ   | Down    |                                           |
| EMIFA16     | W29          | ΟZ   | Down    |                                           |
| EMIFA17     | W26          | ΟZ   | Down    |                                           |
| EMIFA18     | W25          | ΟZ   | Down    |                                           |
| EMIFA19     | W24          | ΟZ   | Down    |                                           |
| EMIFA20     | W23          | ΟZ   | Down    |                                           |
| EMIFA21     | Y29          | ΟZ   | Down    |                                           |
| EMIFA22     | Y28          | ΟZ   | Down    |                                           |
| EMIFA23     | U23          | ΟZ   | Down    |                                           |
| EMIFD00     | Y27          | IOZ  | Down    |                                           |
| EMIFD01     | AB29         | IOZ  | Down    |                                           |
| EMIFD02     | AA29         | IOZ  | Down    |                                           |
| EMIFD03     | Y26          | IOZ  | Down    |                                           |
| EMIFD04     | AA27         | IOZ  | Down    |                                           |
| EMIFD05     | AB27         | IOZ  | Down    |                                           |
| EMIFD06     | AA26         | IOZ  | Down    |                                           |
| EMIFD07     | AA25         | IOZ  | Down    | EMIE16 Data                               |
| EMIFD08     | Y25          | IOZ  | Down    | EMIF16 Data                               |
| EMIFD09     | AB25         | IOZ  | Down    |                                           |
| EMIFD10     | AA24         | IOZ  | Down    |                                           |
| EMIFD11     | Y24          | IOZ  | Down    |                                           |
| EMIFD12     | AB23         | IOZ  | Down    |                                           |
| EMIFD13     | AB24         | IOZ  | Down    |                                           |
| EMIFD14     | AB26         | IOZ  | Down    |                                           |
| EMIFD15     | AC25         | IOZ  | Down    |                                           |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 7 of 13)



| Signal Name | Ball No. | Туре | IPD/IPU | Description                                                                                                         |
|-------------|----------|------|---------|---------------------------------------------------------------------------------------------------------------------|
|             |          | _    |         | EMU                                                                                                                 |
| EMU00       | AC29     | IOZ  | UP      |                                                                                                                     |
| EMU01       | AC28     | IOZ  | UP      |                                                                                                                     |
| EMU02       | AC27     | IOZ  | UP      |                                                                                                                     |
| EMU03       | AC26     | IOZ  | UP      |                                                                                                                     |
| EMU04       | AD29     | IOZ  | UP      |                                                                                                                     |
| EMU05       | AD28     | IOZ  | UP      |                                                                                                                     |
| EMU06       | AD27     | IOZ  | UP      |                                                                                                                     |
| EMU07       | AE29     | IOZ  | UP      |                                                                                                                     |
| EMU08       | AE28     | IOZ  | UP      |                                                                                                                     |
| EMU09       | AF29     | IOZ  | UP      | Emulation and Trace Port                                                                                            |
| EMU10       | AE27     | IOZ  | UP      |                                                                                                                     |
| EMU11       | AF28     | IOZ  | UP      |                                                                                                                     |
| EMU12       | AG29     | IOZ  | UP      |                                                                                                                     |
| EMU13       | AD26     | IOZ  | UP      |                                                                                                                     |
| EMU14       | AG28     | IOZ  | UP      |                                                                                                                     |
| EMU15       | AG27     | IOZ  | UP      |                                                                                                                     |
| EMU16       | AJ27     | IOZ  | UP      |                                                                                                                     |
| EMU17       | AF27     | IOZ  | UP      |                                                                                                                     |
| EMU18       | AH27     | IOZ  | UP      |                                                                                                                     |
|             |          |      |         | General Purpose Input/Output (GPIO)                                                                                 |
| GPIO00      | H25      | IOZ  | UP      |                                                                                                                     |
| GPIO01      | J28      | IOZ  | Down    |                                                                                                                     |
| GPIO02      | J29      | IOZ  | Down    |                                                                                                                     |
| GPIO03      | J26      | IOZ  | Down    |                                                                                                                     |
| GPIO04      | J25      | IOZ  | Down    |                                                                                                                     |
| GPIO05      | J27      | IOZ  | Down    |                                                                                                                     |
| GPIO06      | J24      | IOZ  | Down    |                                                                                                                     |
| GPIO07      | K27      | IOZ  | Down    | General Purpose Input/Output                                                                                        |
| GPIO08      | K28      | IOZ  | Down    | These GPIO pins have secondary functions assigned to them as mentioned in the "Boot Configuration Pins" on page 44. |
| GPIO09      | K26      | IOZ  | Down    |                                                                                                                     |
| GPIO10      | K29      | IOZ  | Down    |                                                                                                                     |
| GPIO11      | L28      | IOZ  | Down    |                                                                                                                     |
| GPIO12      | L29      | IOZ  | Down    |                                                                                                                     |
| GPIO13      | K25      | IOZ  | Down    |                                                                                                                     |
| GPIO14      | K24      | IOZ  | Down    |                                                                                                                     |
| GPIO15      | L27      | IOZ  | Down    |                                                                                                                     |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 8 of 13)



SPRS708E—March 2014

Т

Г

| Signal Name   | Ball No. | Туре | IPD/IPU | Description                                                 |
|---------------|----------|------|---------|-------------------------------------------------------------|
|               |          |      |         | HyperLink                                                   |
| MCMRXN0       | U2       | 1    |         |                                                             |
| MCMRXP0       | T2       | 1    |         |                                                             |
| MCMRXN1       | T1       | I    |         |                                                             |
| MCMRXP1       | R1       | 1    |         | Sovial Humari ink Dasaiya Data                              |
| MCMRXN2       | M1       | 1    |         | Serial HyperLink Receive Data                               |
| MCMRXP2       | N1       | I    |         |                                                             |
| MCMRXN3       | P2       | I    |         |                                                             |
| MCMRXP3       | N2       | 1    |         |                                                             |
| MCMTXN0       | M5       | 0    |         |                                                             |
| МСМТХРО       | N5       | 0    |         |                                                             |
| MCMTXN1       | T4       | 0    |         |                                                             |
| MCMTXP1       | U4       | 0    |         | Sovial Humari ink Transmit Data                             |
| MCMTXN2       | R5       | 0    |         | Serial HyperLink Transmit Data                              |
| MCMTXP2       | T5       | 0    |         |                                                             |
| MCMTXN3       | N4       | 0    |         |                                                             |
| МСМТХРЗ       | P4       | 0    |         |                                                             |
| MCMRXFLCLK    | W3       | 0    | Down    |                                                             |
| MCMRXFLDAT    | W4       | 0    | Down    |                                                             |
| MCMTXFLCLK    | AA1      | I    | Down    |                                                             |
| MCMTXFLDAT    | AA3      | I    | Down    | Carial Hunari ink Cidaband Cianala                          |
| MCMRXPMCLK    | Y3       | I    | Down    | Serial HyperLink Sideband Signals                           |
| MCMRXPMDAT    | Y4       | I    | Down    |                                                             |
| MCMTXPMCLK    | AA2      | 0    | Down    |                                                             |
| MCMTXPMDAT    | AA4      | 0    | Down    |                                                             |
| MCMREFCLKOUTP | Y1       | 0    |         | HyperLink Reference clock output for daisy chain connection |
| MCMREFCLKOUTN | W1       | 0    |         |                                                             |
|               | T        |      | T.      | l <sup>2</sup> C                                            |
| SCL           | AD3      | IOZ  |         | l <sup>2</sup> C Clock                                      |
| SDA           | AC4      | IOZ  |         | I <sup>2</sup> C Data                                       |
|               |          | r    | -       | JTAG                                                        |
| тск           | N29      | I    | UP      | JTAG Clock Input                                            |
| TDI           | P27      | I    | UP      | JTAG Data Input                                             |
| TDO           | R29      | ΟZ   | UP      | JTAG Data Output                                            |
| TMS           | P29      | I    | UP      | JTAG Test Mode Input                                        |
| TRST          | P28      | I    | Down    | JTAG Reset                                                  |
|               |          | r    | -       | MDIO                                                        |
| MDIO          | G26      | IOZ  | UP      | MDIO Data                                                   |
| MDCLK         | H26      | 0    | Down    | MDIO Clock                                                  |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 9 of 13)



| Signal Name | Ball No. | Туре | IPD/IPU                                | Description                                                                                  |
|-------------|----------|------|----------------------------------------|----------------------------------------------------------------------------------------------|
|             |          |      |                                        | PCIe                                                                                         |
| PCIERXN0    | AH7      | I    |                                        |                                                                                              |
| PCIERXP0    | AH8      | I    | PClexpress Receive Data (2 links)      |                                                                                              |
| PCIERXN1    | AJ9      | I    |                                        | PClexpress Receive Data (2 links)                                                            |
| PCIERXP1    | AJ8      | I    |                                        |                                                                                              |
| PCIETXN0    | AF8      | 0    |                                        |                                                                                              |
| PCIETXP0    | AF7      | 0    |                                        | PClexpress Transmit Data (2 links)                                                           |
| PCIETXN1    | AG9      | 0    |                                        |                                                                                              |
| PCIETXP1    | AG8      | 0    |                                        |                                                                                              |
|             | -        | ł.   |                                        | Serial RapidIO                                                                               |
| RIORXN0     | AJ11     | I    |                                        |                                                                                              |
| RIORXP0     | AJ12     | I    |                                        | Serial RapidlO Receive Data (2 links)                                                        |
| RIORXN1     | AH10     | I    |                                        |                                                                                              |
| RIORXP1     | AH11     | I    |                                        |                                                                                              |
| RIORXN2     | AH14     | I    |                                        |                                                                                              |
| RIORXP2     | AH13     | I    | Serial RapidlO Receive Data (2 links)  |                                                                                              |
| RIORXN3     | AJ15     | I    |                                        |                                                                                              |
| RIORXP3     | AJ14     | I    |                                        |                                                                                              |
| RIOTXN0     | AF10     | 0    |                                        |                                                                                              |
| RIOTXP0     | AF11     | 0    | Serial BanidlO Transmit Data (2 links) |                                                                                              |
| RIOTXN1     | AG11     | 0    |                                        | Serial RapidlO Transmit Data (2 links)                                                       |
| RIOTXP1     | AG12     | 0    |                                        |                                                                                              |
| RIOTXN2     | AG15     | 0    |                                        |                                                                                              |
| RIOTXP2     | AG14     | 0    |                                        |                                                                                              |
| RIOTXN3     | AF14     | 0    |                                        | Serial RapidIO Transmit Data (2 links)                                                       |
| RIOTXP3     | AF13     | 0    |                                        |                                                                                              |
|             |          |      |                                        | SGMII                                                                                        |
| SGMIIORXN   | AJ18     | I    |                                        |                                                                                              |
| SGMIIORXP   | AJ17     | I    |                                        | Ethernet MAC SGMII Receive Data                                                              |
| SGMII0TXN   | AG18     | 0    |                                        | Ethernet MAC SGMII Transmit Data                                                             |
| SGMII0TXP   | AG17     | 0    |                                        | Ethemet MAC SGMII Transmit Data                                                              |
| SGMII1RXN   | AH17     | 1    |                                        | Ethernet MAC SGMII Receive Data                                                              |
| SGMII1RXP   | AH16     | I    |                                        |                                                                                              |
| SGMII1TXN   | AF17     | 0    |                                        | Ethernet MAC SCMII Transmit Data                                                             |
| SGMII1TXP   | AF16     | 0    |                                        | Ethernet MAC SGMII Transmit Data                                                             |
|             |          |      |                                        | SmartReflex                                                                                  |
| VCNTL0      | L23      | ΟZ   |                                        |                                                                                              |
| VCNTL1      | K23      | ΟZ   |                                        | Voltage Control Outputs to variable core power supply. These are open-drain output buffers.  |
| VCNTL2      | J23      | ΟZ   |                                        | voltage control outputs to variable core power supply. These are open-urally output bullets. |
| VCNTL3      | H23      | ΟZ   |                                        |                                                                                              |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 10 of 13)



SPRS708E—March 2014

| Signal Name | Ball No. | Туре | IPD/IPU | Description            |
|-------------|----------|------|---------|------------------------|
|             |          |      |         | SPI                    |
| SPISCS0     | AG1      | OZ   | UP      | SPI Interface Enable 0 |
| SPISCS1     | AG2      | OZ   | UP      | SPI Interface Enable 1 |
| SPICLK      | AE1      | OZ   | Down    | SPI Clock              |
| SPIDIN      | AD2      | I    | Down    | SPI Data In            |
| SPIDOUT     | AB1      | OZ   | Down    | SPI Data Out           |
|             |          |      |         | Timer                  |
| ТІМІО       | L24      | I    | Down    | The sector             |
| TIMI1       | L26      | I    | Down    | Timer Inputs           |
| TIMO0       | L25      | OZ   | Down    |                        |
| TIMO1       | M26      | OZ   | Down    | Timer Outputs          |
|             |          |      |         | TSIP                   |
| CLKA0       | AF25     | I    | Down    | TSIP0 external clock A |
| CLKB0       | AG25     | I    | Down    | TSIP0 external clock B |
| FSA0        | AJ26     | I    | Down    | TSIP0 frame sync A     |
| FSB0        | AG26     | I    | Down    | TSIP0 frame sync B     |
| TR00        | AH26     | I    | Down    |                        |
| TR01        | AJ25     | I    | Down    |                        |
| TR02        | AD23     | I    | Down    |                        |
| TR03        | AD24     | I    | Down    |                        |
| TR04        | AC23     | I    | Down    | TSIP0 receive data     |
| TR05        | AH25     | I    | Down    |                        |
| TR06        | AC24     | I    | Down    |                        |
| TR07        | AE25     | I    | Down    |                        |
| TX00        | AE24     | OZ   | Down    |                        |
| TX01        | AD25     | OZ   | Down    |                        |
| TX02        | AJ24     | OZ   | Down    |                        |
| TX03        | AG24     | OZ   | Down    |                        |
| TX04        | AH24     | OZ   | Down    | TSIP0 transmit data    |
| TX05        | AF24     | OZ   | Down    |                        |
| TX06        | AE23     | OZ   | Down    |                        |
| TX07        | AF23     | OZ   | Down    |                        |
| CLKA1       | AJ23     | I    | Down    | TSIP1 external clock A |
| CLKB1       | AH23     | I    | Down    | TSIP1 external clock B |
| FSA1        | AG23     | I    | Down    | TSIP1 frame sync A     |
| FSB1        | AJ22     | I    | Down    | TSIP1 frame sync B     |

#### Table 2-26 Terminal Functions — Signals and Control by Function (Part 11 of 13)



| able 2-26 Terminal Functions — Signals and Control by Function (Part 12 of 13) |          |      |         |                              |  |
|--------------------------------------------------------------------------------|----------|------|---------|------------------------------|--|
| Signal Name                                                                    | Ball No. | Туре | IPD/IPU | Description                  |  |
| TR10                                                                           | AE22     | I    | Down    |                              |  |
| TR11                                                                           | AD21     | I    | Down    |                              |  |
| TR12                                                                           | AC21     | I    | Down    |                              |  |
| TR13                                                                           | AJ21     | I    | Down    |                              |  |
| TR14                                                                           | AH22     | I    | Down    | TSIP1 receive data           |  |
| TR15                                                                           | AJ20     | I    | Down    |                              |  |
| TR16                                                                           | AH21     | I    | Down    |                              |  |
| TR17                                                                           | AG21     | I    | Down    |                              |  |
| TX10                                                                           | AF21     | OZ   | Down    |                              |  |
| TX11                                                                           | AD22     | ΟZ   | Down    |                              |  |
| TX12                                                                           | AC22     | ΟZ   | Down    |                              |  |
| TX13                                                                           | AE21     | ΟZ   | Down    |                              |  |
| TX14                                                                           | AG20     | ΟZ   | Down    | TSIP1 transmit data          |  |
| TX15                                                                           | AE20     | ΟZ   | Down    |                              |  |
| TX16                                                                           | AH20     | ΟZ   | Down    |                              |  |
| TX17                                                                           | AF20     | ΟZ   | Down    |                              |  |
| UART                                                                           |          |      |         |                              |  |
| UARTRXD                                                                        | AD1      | I    | Down    | UART Serial Data In          |  |
| UARTTXD                                                                        | AC1      | ΟZ   | Down    | UART Serial Data Out         |  |
| UARTCTS                                                                        | AB3      | I    | Down    | UART Clear To Send           |  |
| UARTRTS                                                                        | AB2      | ΟZ   | Down    | UART Request To Send         |  |
|                                                                                |          | 1    |         | Reserved                     |  |
| RSV01                                                                          | AH28     | IOZ  | Down    | Reserved - Pullup to DVDD18  |  |
| RSV02                                                                          | N24      | ΟZ   | Down    | Reserved - leave unconnected |  |
| RSV03                                                                          | N23      | OZ   | Down    | Reserved - leave unconnected |  |
| RSV04                                                                          | AH2      | 0    |         | Reserved - leave unconnected |  |
| RSV05                                                                          | AJ3      | 0    |         | Reserved - leave unconnected |  |
| RSV06                                                                          | H28      | 0    |         | Reserved - leave unconnected |  |
| RSV07                                                                          | G28      | 0    |         | Reserved - leave unconnected |  |
| RSV08                                                                          | AH19     | А    |         | Reserved - Connect to GND    |  |
| RSV09                                                                          | AF19     | А    |         | Reserved - leave unconnected |  |
| RSV10                                                                          | K22      | А    |         | Reserved - leave unconnected |  |
| RSV11                                                                          | J22      | А    |         | Reserved - leave unconnected |  |
| RSV12                                                                          | Y5       | А    |         | Reserved - leave unconnected |  |
| RSV13                                                                          | W5       | А    |         | Reserved - leave unconnected |  |
| RSV14                                                                          | W6       | А    |         | Reserved - leave unconnected |  |
| RSV15                                                                          | AE12     | А    |         | Reserved - leave unconnected |  |
| RSV16                                                                          | AC9      | А    |         | Reserved - leave unconnected |  |
| RSV17                                                                          | AD19     | А    |         | Reserved - leave unconnected |  |
| RSV20                                                                          | AF3      | OZ   | Down    | Reserved - leave unconnected |  |
| RSV21                                                                          | G25      | ΟZ   | Down    | Reserved - leave unconnected |  |
| RSV22                                                                          | AF1      | OZ   | Down    | Reserved - leave unconnected |  |
| RSV24                                                                          | AH4      | 0    |         | Reserved - leave unconnected |  |

 Table 2-26
 Terminal Functions — Signals and Control by Function (Part 12 of 13)



SPRS708E—March 2014

| Signal Name       | Ball No. | Туре | IPD/IPU | Description                  |
|-------------------|----------|------|---------|------------------------------|
| RSV25             | AH3      | 0    |         | Reserved - leave unconnected |
| RSV26             | M23      | IOZ  |         | Reserved - leave unconnected |
| RSV27             | M24      | IOZ  |         | Reserved - leave unconnected |
| RSV0A             | AA21     | А    |         | Reserved - leave unconnected |
| RSV0B             | AA20     | А    |         | Reserved - leave unconnected |
| End of Table 2-26 |          |      |         |                              |

### Table 2-26 Terminal Functions — Signals and Control by Function (Part 13 of 13)



| Supply   | Ball No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Volts            | Description                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|
| AVDDA1   | H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8              | PLL Supply - CORE_PLL                         |
| AVDDA2   | AC6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8              | PLL Supply - DDR3_PLL                         |
| AVDDA3   | AD5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8              | PLL Supply - PASS_PLL                         |
| CVDD     | H7, H9, H11, H13, H15, H17, H19, H21, J10, J12, J16, J18, J20, K11, K17, K19, K21, L10, L12, L16, L18, M11, M13, M15, M17, M19, N8, N10, N12, N14, N16, N18, P9, P11, P13, P15, P17, P19, P21, R8, R10, R18, R20, R22, T9, T11, T13, T15, T17, T19, T21, U8, U10, U18, U20, U22, V9, V11, V17, V19, V21, W8, W10, W18, W20, W22, Y9, Y11, Y13, Y15, Y17, Y19, Y21, AA8, AA10, AA12, AA14, AA16, AA18, AA22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9<br>to<br>1.1 | SmartReflex core supply voltage               |
| CVDD1    | J8, J14, K7, K9, K13, K15, L8, L14, L20, L22, M9, M21, N20, N22, R12, R14, R16, U12, U14, U16, V13, V15, W12, W14, W16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0              | Fixed core supply voltage for<br>memory array |
| DVDD15   | A2, A11, A17, A28, B1, B29, C14, C25, D5, D8, D20, D23, E3, F5, F7, F9, F11, F17, F19, F26, F28, G2, G4, G8, G10, G12, G14, G16, G18, G20, G23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5              | DDR IO supply                                 |
| DVDD18   | H24, N28, P23, T23, U26, V23, Y7, Y23, AA6, AB5, AB7, AB19, AB21, AB28, AC3, AF5, AF26, AG22, AH1, AH29, AJ2, AJ28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8              | IO supply                                     |
| VDDR1    | V5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5              | HyperLink SerDes regulator supply             |
| VDDR2    | AE10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5              | PCIe SerDes regulator supply                  |
| VDDR3    | AE16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5              | SGMII SerDes regulator supply                 |
| VDDR4    | AE14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5              | SRIO SerDes regulator supply                  |
| VDDT1    | M7, N6, P7, R6, T7, U6, V7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0              | HyperLink SerDes termination<br>supply        |
| VDDT2    | AB9, AB11, AB13, AB15, AB17, AC8, AC10, AC12, AC14, AC16, AC18, AD7, AD9, AD11, AD13, AD15, AD17, AE18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0              | SGMII/SRIO/PCIe SerDes<br>termination supply  |
| VREFSSTL | E14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.75             | DDR3 reference voltage                        |
| VSS      | A1, A29, B11, B17, B25, C8, C23, D3, D14, D18, E5, E20, F6, F8, F10, F12, F16, F18, F27, F29, G1, G3, G5, G6, G7, G9, G11, G13, G15, G17, G19, G21, G24, H1, H2, H3, H4, H5, H6, H8, H10, H12, H14, H16, H18, H20, J1, J2, J3, J4, J5, J6, J7, J9, J11, J13, J15, J17, J19, J21, K1, K2, K3, K4, K5, K6, K8, K10, K12, K14, K16, K18, K20, L1, L2, L3, L4, L5, L6, L7, L9, L11, L13, L15, L17, L19, L21, M2, M3, M4, M6, M8, M10, M12, M14, M16, M18, M20, M22, M28, N3, N7, N9, N11, N13, N15, N17, N19, N21, P1, P3, P5, P6, P8, P10, P12, P14, P16, P18, P20, P22, R2, R3, R4, R7, R9, R11, R13, R15, R17, R19, R21, T3, T6, T8, T10, T12, T14, T16, T18, T20, T22, T26, U1, U3, U5, U7, U9, U11, U13, U15, U17, U19, U21, V1, V2, V3, V4, V6, V8, V10, V12, V14, V16, V18, V20, V22, W7, W9, W11, W13, W15, W17, W19, W21, Y6, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y22, AA5, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA23, AA28, AB4, AB6, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AC2, AC5, AC7, AC11, AC13, AC15, AC17, AC19, AD6, AD8, AD10, AD12, AD14, AD16, AD18, AE7, AE8, AE9, AE11, AE13, AE15, AE17, AE19, AE26, AF4, AF6, AF9, AF12, AF15, AF18, AF22, AG7, AG10, AG13, AG16, AG19, AH6, AH9, AH12, AH15, AH18, AJ1, AJ7, AJ10, AJ13, AJ16, AJ19, AJ29 | GND              | Ground                                        |

### Table 2-27Terminal Functions — Power and Ground



SPRS708E—March 2014

|              | rminal Functions<br>By Signal Name<br>art 1 of 13) | Table 2-28  | Terminal Functions<br>— By Signal Name<br>(Part 2 of 13)        | Table 2-28         | Terminal Functions<br>— By Signal Name<br>(Part 3 of 13) |
|--------------|----------------------------------------------------|-------------|-----------------------------------------------------------------|--------------------|----------------------------------------------------------|
| Signal Name  | Ball Number                                        | Signal Name | Ball Number                                                     | Signal Name        | Ball Number                                              |
| AVDDA1       | H22                                                | CVDD        | W10, W18, W20,                                                  | DDRCLKOUTN0        | B12                                                      |
| AVDDA2       | AC6                                                |             | W22, Y9, Y11, Y13,<br>Y15, Y17, Y19, Y21,                       | DDRCLKOUTN1        | B16                                                      |
| AVDDA3       | AD5                                                |             | AA8, AA10, AA12,                                                | <b>DDRCLKOUTP0</b> | A12                                                      |
| BOOTCOMPLETE | AE2                                                |             | AA14, AA16, AA18,<br>AA22                                       | DDRCLKOUTP1        | A16                                                      |
| BOOTMODE00 † | J28                                                | CVDD1       | J8, J14, K7, K9, K13,                                           | DDRCLKP            | G29                                                      |
| BOOTMODE01+  | J29                                                |             | K15, L8, L14, L20,<br>L22, M9, M21, N20,<br>N22, R12, R14, R16, | DDRD00             | E28                                                      |
| BOOTMODE02 † | J26                                                |             |                                                                 | DDRD01             | D29                                                      |
| BOOTMODE03 † | J25                                                |             | U12, U14, U16, V13,                                             | DDRD02             | E27                                                      |
| BOOTMODE04 † | J27                                                |             | V15, W12, W14,<br>W16                                           | DDRD03             | D28                                                      |
| BOOTMODE05 † | J24                                                | DDRA00      | A14                                                             | DDRD04             | D27                                                      |
| BOOTMODE06 † | K27                                                | DDRA01      | B14                                                             | DDRD05             | B28                                                      |
| BOOTMODE07 † | K28                                                | DDRA02      | F14                                                             | DDRD06             | E26                                                      |
| BOOTMODE08 † | K26                                                | DDRA03      | F13                                                             | DDRD07             | F25                                                      |
| BOOTMODE09 † | K29                                                | DDRA04      | A15                                                             | DDRD08             | F24                                                      |
| BOOTMODE10 † | L28                                                | DDRA05      | C15                                                             | DDRD09             | E24                                                      |
| BOOTMODE11 † | L29                                                | DDRA06      | B15                                                             | DDRD10             | E25                                                      |
| BOOTMODE12 † | K25                                                | DDRA07      | D15                                                             | DDRD11             | D25                                                      |
| CLKA0        | AF25                                               | DDRA08      | F15                                                             | DDRD12             | D26                                                      |
| CLKA1        | AJ23                                               | DDRA09      | E15                                                             | DDRD13             | C26                                                      |
| CLKB0        | AG25                                               | DDRA10      | E16                                                             | DDRD14             | B26                                                      |
| CLKB1        | AH23                                               | DDRA11      | D16                                                             | DDRD15             | A26                                                      |
| CORECLKN     | AG4                                                | DDRA12      | E17                                                             | DDRD16             | F23                                                      |
| CORECLKP     | AG3                                                | DDRA13      | C16                                                             | DDRD17             | F22                                                      |
| CORESEL0     | AF2                                                | DDRA14      | D17                                                             | DDRD18             | D24                                                      |
| CORESEL1     | AD4                                                | DDRA15      | C17                                                             | DDRD19             | E23                                                      |
| CORESEL2     | AE6                                                | DDRBA0      | A13                                                             | DDRD20             | A23                                                      |
| CORESEL3     | AE5                                                | DDRBA1      | B13                                                             | DDRD21             | B23                                                      |
| CVDD         | H7, H9, H11, H13,                                  | DDRBA2      | C13                                                             | DDRD22             | C24                                                      |
|              | H15, H17, H19, H21,<br>J10, J12, J16, J18,         | DDRCAS      | D12                                                             | DDRD23             | E22                                                      |
|              | J20, K11, K17, K19,                                | DDRCB00     | E19                                                             | DDRD24             | D21                                                      |
|              | K21, L10, L12, L16,<br>L18, M11, M13,              | DDRCB01     | C20                                                             | DDRD25             | F20                                                      |
|              | M15, M17, M19, N8,                                 | DDRCB02     | D19                                                             | DDRD26             | E21                                                      |
|              | N10, N12, N14,                                     | DDRCB03     | B20                                                             | DDRD27             | F21                                                      |
| CVDD         | N16, N18, P9, P11,<br>P13, P15, P17, P19,          | DDRCB04     | C19                                                             | DDRD28             | D22                                                      |
|              | P21, R8, R10, R18,                                 | DDRCB05     | C18                                                             | DDRD29             | C21                                                      |
|              | R20, R22, T9, T11,<br>T13, T15, T17, T19,          | DDRCB06     | B18                                                             | DDRD30             | B22                                                      |
|              | T21, U8, U10, U18,                                 | DDRCB07     | A18                                                             | DDRD31             | C22                                                      |
|              | U20, U22, V9, V11,<br>V17, V19, V21, W8,           | DDRCE0      | C11                                                             | DDRD32             | E10                                                      |
|              |                                                    | DDRCE1      | C12                                                             | DDRD33             | D10                                                      |
|              |                                                    | DDRCKE0     | D11                                                             | DDRD34             | B10                                                      |
|              |                                                    | 1           |                                                                 | DDRD35             |                                                          |

DDRCLKN

H29

E9

DDRD36

SPRS708E—March 2014



| Table 2-28           | Terminal Functions<br>— By Signal Name<br>(Part 4 of 13) | Table 2-28  | Terminal Functions<br>— By Signal Name<br>(Part 5 of 13)        | Table 2-28     | Terminal Functio<br>— By Signal Nam<br>(Part 6 of 13) |
|----------------------|----------------------------------------------------------|-------------|-----------------------------------------------------------------|----------------|-------------------------------------------------------|
| Signal Name          | Ball Number                                              | Signal Name | Ball Number                                                     | Signal Name    | Ball Number                                           |
| DDRD37               | С9                                                       | DDRDQS3N    | B21                                                             | EMIFA13        | V24                                                   |
| DDRD38               | B8                                                       | DDRDQS3P    | A21                                                             | EMIFA14        | W28                                                   |
| DDRD39               | E8                                                       | DDRDQS4N    | B9                                                              | EMIFA15        | W27                                                   |
| DDRD40               | A7                                                       | DDRDQS4P    | A9                                                              | EMIFA16        | W29                                                   |
| DDRD41               | D7                                                       | DDRDQS5N    | A6                                                              | EMIFA17        | W26                                                   |
| DDRD42               | E7                                                       | DDRDQS5P    | B6                                                              | EMIFA18        | W25                                                   |
| DDRD43               | C7                                                       | DDRDQS6N    | A3                                                              | EMIFA19        | W24                                                   |
| DDRD44               | B7                                                       | DDRDQS6P    | B3                                                              | EMIFA20        | W23                                                   |
| DDRD45               | E6                                                       | DDRDQS7N    | C1                                                              | EMIFA21        | Y29                                                   |
| DDRD46               | D6                                                       | DDRDQS7P    | D1                                                              | EMIFA22        | Y28                                                   |
| DDRD47               | C6                                                       | DDRDQS8N    | B19                                                             | EMIFA23        | U23                                                   |
| DDRD48               | C5                                                       | DDRDQS8P    | A19                                                             | EMIFBEO        | R24                                                   |
| DDRD49               | A5                                                       | DDRODT0     | D13                                                             | EMIFBE1        | R23                                                   |
| DDRD50               | B4                                                       | DDRODT1     | E13                                                             | <b>EMIFCEO</b> | P25                                                   |
| DDRD51               | A4                                                       | DDRRAS      | C10                                                             | EMIFCE1        | R27                                                   |
| DDRD52               | D4                                                       | DDRRESET    | E11                                                             | EMIFCE2        | R28                                                   |
| DDRD53               | E4                                                       | DDRSLRATEO  | G27                                                             | EMIFCE3        | R25                                                   |
| DDRD54               | C4                                                       | DDRSLRATE1  | H27                                                             | EMIFD00        | Y27                                                   |
| DDRD55               | C3                                                       | DDRWE       | E12                                                             | EMIFD01        | AB29                                                  |
| DDRD56               | F4                                                       | DVDD15      | A2, A11, A17, A28,                                              | EMIFD02        | AA29                                                  |
| DDRD57               | D2                                                       |             | B1, B29, C14, C25,<br>D5, D8, D20, D23,                         | EMIFD03        | Y26                                                   |
| DDRD58               | E2                                                       |             | E3, F5, F7, F9, F11,<br>F17, F19, F26, F28,<br>G2, G4, G8, G10, |                | AA27                                                  |
| DDRD59               | C2                                                       |             |                                                                 |                | AB27                                                  |
| DDRD60               | F2                                                       |             | G12, G14, G16, G18,                                             | EMIFD06        | AA26                                                  |
| DDRD61               | F3                                                       |             | G20, G23                                                        | EMIFD07        | AA25                                                  |
| DDRD62               | E1                                                       | DVDD18      | H24, N28, P23, T23,<br>U26, V23, Y7, Y23,                       | EMIFD08        | Y25                                                   |
| DDRD63               | F1                                                       |             | AA6, AB5, AB7,                                                  | EMIFD09        | AB25                                                  |
| DDRDQM0              | E29                                                      |             | AB19, AB21, AB28,<br>AC3, AF5, AF26,                            | EMIFD10        | AA24                                                  |
| DDRDQM1              | C27                                                      |             | AG22, AH1, AH29,                                                | EMIFD11        | Y24                                                   |
| DDRDQM2              | A25                                                      |             | AJ2, AJ28                                                       | EMIFD12        | AB23                                                  |
| DDRDQM3              | A22                                                      | EMIFA00     | T27                                                             | EMIFD13        | AB24                                                  |
| DDRDQM4              | A10                                                      | EMIFA01     | T24                                                             | EMIFD14        | AB26                                                  |
| DDRDOM5              | A8                                                       | EMIFA02     | U29                                                             | EMIFD15        | AC25                                                  |
| DDRDQM6              | B5                                                       | EMIFA03     | T25                                                             | EMIFOE         | R26                                                   |
| DDRDQM7              | B2                                                       | EMIFA04     | U27                                                             | EMIFRW         | P26                                                   |
| DDRDQM8              | A20                                                      | EMIFA05     | U28                                                             | EMIFWAITO      | T29                                                   |
| DDRDQSON             | C29                                                      | EMIFA06     | U25                                                             | EMIFWAIT1      | T28                                                   |
| DDRDQS0P             | C28                                                      | EMIFA07     | U24                                                             | EMIFWE         | P24                                                   |
| DDRDQ501             | B27                                                      | EMIFA08     | V28                                                             | EMU00          | AC29                                                  |
| DDRDQ51N<br>DDRDQ51P | A27                                                      | EMIFA09     | V29                                                             | EMU01          | AC28                                                  |
| DDRDQ511             | B24                                                      | EMIFA10     | V27                                                             | EMU02          | AC27                                                  |
| DDRDQ52N             | A24                                                      | EMIFA11     | V26                                                             | EMU02          | AC26                                                  |



## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014

| Table 2-28  | Terminal Functions<br>— By Signal Name<br>(Part 7 of 13) |                | Terminal Functions<br>— By Signal Name<br>(Part 8 of 13) | Table 2-28     | Terminal Function<br>— By Signal Name<br>(Part 9 of 13) |
|-------------|----------------------------------------------------------|----------------|----------------------------------------------------------|----------------|---------------------------------------------------------|
| Signal Name | Ball Number                                              | Signal Name    | Ball Number                                              | Signal Name    | Ball Number                                             |
| EMU04       | AD29                                                     | MCMREFCLKOUT   | P Y1                                                     | PCIETXP0       | AF7                                                     |
| EMU05       | AD28                                                     | MCMRXFLCLK     | W3                                                       | PCIETXP1       | AG8                                                     |
| EMU06       | AD27                                                     | MCMRXFLDAT     | W4                                                       | POR            | AC20                                                    |
| EMU07       | AE29                                                     | MCMRXN0        | U2                                                       | PTV15          | G22                                                     |
| EMU08       | AE28                                                     | MCMRXN1        | T1                                                       | RESETFULL      | N25                                                     |
| EMU09       | AF29                                                     | MCMRXN2        | M1                                                       | RESETSTAT      | N27                                                     |
| EMU10       | AE27                                                     | MCMRXN3        | P2                                                       | RESET          | M29                                                     |
| EMU11       | AF28                                                     | MCMRXP0        | T2                                                       | RIORXN0        | AJ11                                                    |
| EMU12       | AG29                                                     | MCMRXP1        | R1                                                       | RIORXN1        | AH10                                                    |
| EMU13       | AD26                                                     | MCMRXP2        | N1                                                       | RIORXN2        | AH14                                                    |
| EMU14       | AG28                                                     | MCMRXP3        | N2                                                       | RIORXN3        | AJ15                                                    |
| EMU15       | AG27                                                     | MCMRXPMCLK     | Y3                                                       | RIORXP0        | AJ12                                                    |
| EMU16       | AJ27                                                     | MCMRXPMDAT     | Y4                                                       | RIORXP1        | AH11                                                    |
| EMU17       | AF27                                                     | MCMTXFLCLK     | AA1                                                      | RIORXP2        | AH13                                                    |
| EMU18       | AH27                                                     | MCMTXFLDAT     | AA3                                                      | RIORXP3        | AJ14                                                    |
| FSA0        | AJ26                                                     | MCMTXN0        | M5                                                       | <b>RIOTXN0</b> | AF10                                                    |
| FSA1        | AG23                                                     | MCMTXN1        | T4                                                       | RIOTXN1        | AG11                                                    |
| FSB0        | AG26                                                     | MCMTXN2        | R5                                                       | RIOTXN2        | AG15                                                    |
| FSB1        | AJ22                                                     | MCMTXN3        | N4                                                       | RIOTXN3        | AF14                                                    |
| GPIO00      | H25                                                      | MCMTXP0        | N5                                                       | RIOTXP0        | AF11                                                    |
| GPIO01      | J28                                                      | MCMTXP1        | U4                                                       | RIOTXP1        | AG12                                                    |
| GPIO02      | J29                                                      | MCMTXP2        | T5                                                       | RIOTXP2        | AG14                                                    |
| GPIO03      | J26                                                      | <b>МСМТХР3</b> | P4                                                       | RIOTXP3        | AF13                                                    |
| GPIO04      | J25                                                      | MCMTXPMCLK     | AA2                                                      | RSV01          | AH28                                                    |
| GPIO05      | J27                                                      | MCMTXPMDAT     | AA4                                                      | RSV02          | N24                                                     |
| GPIO06      | J24                                                      | MDCLK          | H26                                                      | RSV03          | N23                                                     |
| GPIO07      | K27                                                      | MDIO           | G26                                                      | RSV04          | AH2                                                     |
| GPIO08      | K28                                                      | NMI            | M25                                                      | RSV05          | AJ3                                                     |
| GPIO09      | K26                                                      | PACLKSEL       | AE4                                                      | RSV06          | H28                                                     |
| GPIO10      | K29                                                      | PASSCLKN       | AJ4                                                      | RSV07          | G28                                                     |
| GPIO11      | L28                                                      | PASSCLKP       | AJ5                                                      | RSV08          | AH19                                                    |
| GPIO12      | L29                                                      | PCIECLKN       | AH5                                                      | RSV09          | AF19                                                    |
| GPIO13      | K25                                                      | PCIECLKP       | AG5                                                      | <b>RSV0A</b>   | AA21                                                    |
| GPIO14      | K24                                                      | PCIERXN0       | AH7                                                      | <b>RSV0B</b>   | AA20                                                    |
| GPIO15      | L27                                                      | PCIERXN1       | AJ9                                                      | RSV10          | K22                                                     |
| HOUT        | AD20                                                     | PCIERXP0       | AH8                                                      | RSV11          | J22                                                     |
| LENDIAN †   | H25                                                      | PCIERXP1       | AJ8                                                      | RSV12          | Y5                                                      |
| LRESETNMIEN | M27                                                      | PCIESSMODE0 †  | K24                                                      | RSV13          | W5                                                      |
| LRESET      | N26                                                      | PCIESSMODE1 †  | L27                                                      | RSV14          | W6                                                      |
| MCMCLKN     | Y2                                                       | PCIESSEN †     | L24                                                      | RSV15          | AE12                                                    |
| MCMCLKP     | W2                                                       | PCIETXN0       | AF8                                                      | RSV16          | AC9                                                     |
| MCMREFCLKOL |                                                          | PCIETXN1       | AG9                                                      | RSV17          | AD19                                                    |

SPRS708E—March 2014



Terminal Functions — By Signal Name

| Table 2-28    | Terminal Functions<br>— By Signal Name<br>(Part 10 of 13) | Table 2-28  | Terminal Functions<br>— By Signal Name<br>(Part 11 of 13) | Table 2-28 |
|---------------|-----------------------------------------------------------|-------------|-----------------------------------------------------------|------------|
| Signal Name   | Ball Number                                               | Signal Name | Ball Number                                               | Signal Nam |
| RSV20         | AF3                                                       | TR13        | AJ21                                                      | VSS        |
| RSV21         | G25                                                       | TR14        | AH22                                                      |            |
| RSV22         | AF1                                                       | TR15        | AJ20                                                      |            |
| RSV24         | AH4                                                       | TR16        | AH21                                                      |            |
| RSV25         | AH3                                                       | TR17        | AG21                                                      |            |
| SCL           | AD3                                                       | TRST        | P28                                                       | 1/66       |
| SDA           | AC4                                                       | TX00        | AE24                                                      | VSS        |
| SGMII0RXN     | AJ18                                                      | TX01        | AD25                                                      |            |
| SGMII0RXP     | AJ17                                                      | TX02        | AJ24                                                      |            |
| SGMII0TXN     | AG18                                                      | TX03        | AG24                                                      |            |
| SGMII0TXP     | AG17                                                      | TX04        | AH24                                                      |            |
| SGMII1RXN     | AH17                                                      | TX05        | AF24                                                      | VSS        |
| SGMII1RXP     | AH16                                                      | TX06        | AE23                                                      |            |
| SGMII1TXN     | AF17                                                      | TX07        | AF23                                                      |            |
| SGMII1TXP     | AF16                                                      | TX10        | AF21                                                      |            |
| SPICLK        | AE1                                                       | TX11        | AD22                                                      |            |
| SPIDIN        | AD2                                                       | TX12        | AC22                                                      |            |
| SPIDOUT       | AB1                                                       | TX13        | AE21                                                      | VSS        |
| SPISCS0       | AG1                                                       | TX14        | AG20                                                      |            |
| SPISCS1       | AG2                                                       | TX15        | AE20                                                      |            |
| SRIOSGMIICLKI | N AJ6                                                     | TX16        | AH20                                                      |            |
| SRIOSGMIICLKI | P AG6                                                     | TX17        | AF20                                                      |            |
| SYSCLKOUT     | AE3                                                       | UARTCTS     | AB3                                                       | VSS        |
| ТСК           | N29                                                       | UARTRTS     | AB2                                                       |            |
| TDI           | P27                                                       | UARTRXD     | AD1                                                       |            |
| TDO           | R29                                                       | UARTTXD     | AC1                                                       |            |
| TIMIO         | L24                                                       | VCNTL0      | L23                                                       |            |
| TIMI1         | L26                                                       | VCNTL1      | K23                                                       | VSS        |
| TIMO0         | L25                                                       | VCNTL2      | J23                                                       | V35        |
| TIMO1         | M26                                                       | VCNTL3      | H23                                                       |            |
| TMS           | P29                                                       | VDDR1       | V5                                                        |            |
| TR00          | AH26                                                      | VDDR2       | AE10                                                      |            |
| TR01          | AJ25                                                      | VDDR3       | AE16                                                      |            |
| TR02          | AD23                                                      | VDDR4       | AE14                                                      | VSS        |
| TR03          | AD24                                                      | VDDT1       | M7, N6, P7, R6, T7,                                       |            |
| TR04          | AC23                                                      |             | U6, V7                                                    |            |
| TR05          | AH25                                                      | VDDT2       | AB9, AB11, AB13,<br>AB15, AB17, AC8,                      |            |
| TR06          | AC24                                                      |             | AC10, AC12, AC14,                                         |            |
| TR07          | AE25                                                      |             | AC16, AC18, AD7,<br>AD9, AD11, AD13,                      |            |
| TR10          | AE22                                                      |             | AD15, AD17, AE18                                          |            |
| TR11          | AD21                                                      | VREFSSTL    | E14                                                       |            |
| TR12          | AC21                                                      |             |                                                           |            |

| (Part 12 of 13) |                                                                                                                                                                                              |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Signal Name     | Ball Number                                                                                                                                                                                  |  |  |
| VSS             | A1, A29, B11, B17,<br>B25, C8, C23, D3,<br>D14, D18, E5, E20,<br>F6, F8, F10, F12,<br>F16, F18, F27, F29,<br>G1, G3, G5, G6, G7,<br>G9, G11, G13, G15,<br>G17, G19, G21, G24,                |  |  |
| VSS             | H1, H2, H3, H4, H5,<br>H6, H8, H10, H12,<br>H14, H16, H18, H20,<br>J1, J2, J3, J4, J5, J6,<br>J7, J9, J11, J13, J15,<br>J17, J19, J21, K1, K2,<br>K3, K4, K5, K6, K8,<br>K10, K12, K14, K16, |  |  |
| VSS             | K18, K20, L1, L2, L3,<br>L4, L5, L6, L7, L9,<br>L11, L13, L15, L17,<br>L19, L21, M2, M3,<br>M4, M6, M8, M10,<br>M12, M14, M16,<br>M18, M20, M22,<br>M28, N3, N7, N9,                         |  |  |
| VSS             | N11, N13, N15, N17,<br>N19, N21, P1, P3,<br>P5, P6, P8, P10, P12,<br>P14, P16, P18, P20,<br>P22, R2, R3, R4, R7,<br>R9, R11, R13, R15,<br>R17, R19, R21, T3,<br>T6, T8, T10, T12,            |  |  |
| VSS             | T14, T16, T18, T20,<br>T22, T26, U1, U3,<br>U5, U7, U9, U11,<br>U13, U15, U17, U19,<br>U21, V1, V2, V3, V4,<br>V6, V8, V10, V12,<br>V14, V16, V18, V20,<br>V22, W7, W9, W11,                 |  |  |
| VSS             | W13, W15, W17,<br>W19, W21, Y6, Y8,<br>Y10, Y12, Y14, Y16,<br>Y18, Y20, Y22, AA5,<br>AA7, AA9, AA11,<br>AA13, AA15, AA17,<br>AA19, AA23, AA28,<br>AB4, AB6, AB8,                             |  |  |
| VSS             | AB10, AB12, AB14,<br>AB16, AB18, AB20,<br>AB22, AC2, AC5,<br>AC7, AC11, AC13,<br>AC15, AC17, AC19,<br>AD6, AD8, AD10,<br>AD12, AD14, AD16,<br>AD18, AE7, AE8,                                |  |  |



### Table 2-28 Terminal Functions — By Signal Name (Part 13 of 13)

| Signal Name       | Ball Number                                                                                                                                                 |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| vss               | AE9, AE11, AE13,<br>AE15, AE17, AE19,<br>AE26, AF4, AF6,<br>AF9, AF12, AF15,<br>AF18, AF22AG7,<br>AG10, AG13, AG16,<br>AG19, AH6, AH9,<br>AH12, AH15, AH18, |  |  |
| VSS               | AJ1, AJ7, AJ10,<br>AJ13, AJ16, AJ19,<br>AJ29                                                                                                                |  |  |
| End of Table 2-28 |                                                                                                                                                             |  |  |

SPRS708E—March 2014

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Part 1 of 21) |  |  |
|-------------|----------------------------------------------------------|--|--|
|             | (Part 1 of 21)                                           |  |  |
| Ball Number | Signal Name                                              |  |  |
| A1          | VSS                                                      |  |  |
| A2          | DVDD15                                                   |  |  |
| A3          | DDRDQS6N                                                 |  |  |
| A4          | DDRD51                                                   |  |  |
| A5          | DDRD49                                                   |  |  |
| A6          | DDRDQS5N                                                 |  |  |
| A7          | DDRD40                                                   |  |  |
| A8          | DDRDQM5                                                  |  |  |
| A9          | DDRDQS4P                                                 |  |  |
| A10         | DDRDQM4                                                  |  |  |
| A11         | DVDD15                                                   |  |  |
| A12         | DDRCLKOUTP0                                              |  |  |
| A13         | DDRBA0                                                   |  |  |
| A14         | DDRA00                                                   |  |  |
| A15         | DDRA04                                                   |  |  |
| A16         | DDRCLKOUTP1                                              |  |  |
| A17         | DVDD15                                                   |  |  |
| A18         | DDRCB07                                                  |  |  |
| A19         | DDRDQS8P                                                 |  |  |
| A20         | DDRDQM8                                                  |  |  |
| A21         | DDRDQS3P                                                 |  |  |
| A22         | DDRDQM3                                                  |  |  |
| A23         | DDRD20                                                   |  |  |
| A24         | DDRDQS2P                                                 |  |  |
| A25         | DDRDQM2                                                  |  |  |
| A26         | DDRD15                                                   |  |  |
| A27         | DDRDQS1P                                                 |  |  |
| A28         | DVDD15                                                   |  |  |
| A29         | VSS                                                      |  |  |
| B1          | DVDD15                                                   |  |  |
| B2          | DDRDQM7                                                  |  |  |
| B3          | DDRDQS6P                                                 |  |  |
| B4          | DDRD50                                                   |  |  |
| B5          | DDRDQM6                                                  |  |  |
| B6          | DDRDQS5P                                                 |  |  |
| B7          | DDRD44                                                   |  |  |
| B8          | DDRD38                                                   |  |  |
| B9          | DDRDQS4N                                                 |  |  |
| B9<br>B10   | DDRD34                                                   |  |  |
| B10         | VSS                                                      |  |  |
| B12         | DDRCLKOUTNO                                              |  |  |
|             | DDRELKOUTNU<br>DDRBA1                                    |  |  |
| B13         |                                                          |  |  |

| Table 2-29     | Terminal Functions<br>— By Ball Number |  |  |
|----------------|----------------------------------------|--|--|
| (Part 2 of 21) |                                        |  |  |
| Ball Number    | Signal Name                            |  |  |
| B14            | DDRA01                                 |  |  |
| B15            | DDRA06                                 |  |  |
| B16            | DDRCLKOUTN1                            |  |  |
| B17            | VSS                                    |  |  |
| B18            | DDRCB06                                |  |  |
| B19            | DDRDQS8N                               |  |  |
| B20            | DDRCB03                                |  |  |
| B21            | DDRDQS3N                               |  |  |
| B22            | DDRD30                                 |  |  |
| B23            | DDRD21                                 |  |  |
| B24            | DDRDQS2N                               |  |  |
| B25            | VSS                                    |  |  |
| B26            | DDRD14                                 |  |  |
| B27            | DDRDQS1N                               |  |  |
| B28            | DDRD05                                 |  |  |
| B29            | DVDD15                                 |  |  |
| C1             | DDRDQS7N                               |  |  |
| C2             | DDRD59                                 |  |  |
| С3             | DDRD55                                 |  |  |
| C4             | DDRD54                                 |  |  |
| C5             | DDRD48                                 |  |  |
| C6             | DDRD47                                 |  |  |
| С7             | DDRD43                                 |  |  |
| C8             | VSS                                    |  |  |
| С9             | DDRD37                                 |  |  |
| C10            | DDRRAS                                 |  |  |
| C11            | DDRCE0                                 |  |  |
| C12            | DDRCE1                                 |  |  |
| C13            | DDRBA2                                 |  |  |
| C14            | DVDD15                                 |  |  |
| C15            | DDRA05                                 |  |  |
| C16            | DDRA13                                 |  |  |
| C17            | DDRA15                                 |  |  |
| C18            | DDRCB05                                |  |  |
| C19            | DDRCB04                                |  |  |
| C20            | DDRCB01                                |  |  |
| C21            | DDRD29                                 |  |  |
| C22            | DDRD31                                 |  |  |
| C23            | VSS                                    |  |  |
| C24            | DDRD22                                 |  |  |
| C25            | DVDD15                                 |  |  |
| C26            | DDRD13                                 |  |  |
|                |                                        |  |  |

Table 2-29 Ter — I

### Terminal Functions — By Ball Number (Part 3 of 21)

|             | (Part 3 of 21) |  |  |  |  |
|-------------|----------------|--|--|--|--|
| Ball Number | Signal Name    |  |  |  |  |
| C27         | DDRDQM1        |  |  |  |  |
| C28         | DDRDQS0P       |  |  |  |  |
| C29         | DDRDQS0N       |  |  |  |  |
| D1          | DDRDQS7P       |  |  |  |  |
| D2          | DDRD57         |  |  |  |  |
| D3          | VSS            |  |  |  |  |
| D4          | DDRD52         |  |  |  |  |
| D5          | DVDD15         |  |  |  |  |
| D6          | DDRD46         |  |  |  |  |
| D7          | DDRD41         |  |  |  |  |
| D8          | DVDD15         |  |  |  |  |
| D9          | DDRD35         |  |  |  |  |
| D10         | DDRD33         |  |  |  |  |
| D11         | DDRCKE0        |  |  |  |  |
| D12         | DDRCAS         |  |  |  |  |
| D13         | DDRODT0        |  |  |  |  |
| D14         | VSS            |  |  |  |  |
| D15         | DDRA07         |  |  |  |  |
| D16         | DDRA11         |  |  |  |  |
| D17         | DDRA14         |  |  |  |  |
| D18         | VSS            |  |  |  |  |
| D19         | DDRCB02        |  |  |  |  |
| D20         | DVDD15         |  |  |  |  |
| D21         | DDRD24         |  |  |  |  |
| D22         | DDRD28         |  |  |  |  |
| D23         | DVDD15         |  |  |  |  |
| D24         | DDRD18         |  |  |  |  |
| D25         | DDRD11         |  |  |  |  |
| D26         | DDRD12         |  |  |  |  |
| D27         | DDRD04         |  |  |  |  |
| D28         | DDRD03         |  |  |  |  |
| D29         | DDRD01         |  |  |  |  |
| E1          | DDRD62         |  |  |  |  |
| E2          | DDRD58         |  |  |  |  |
| E3          | DVDD15         |  |  |  |  |
| E4          | DDRD53         |  |  |  |  |
| E5          | VSS            |  |  |  |  |
| E6          | DDRD45         |  |  |  |  |
| E7          | DDRD42         |  |  |  |  |
| E8          | DDRD39         |  |  |  |  |
| E9          | DDRD36         |  |  |  |  |
| E10         | DDRD32         |  |  |  |  |



SPRS708E—March 2014

Terminal Functions — By Ball Number (Part 6 of 21)

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Part 4 of 21) | Table 2-29         | Terminal Functions<br>— By Ball Number<br>(Part 5 of 21) | Table 2-29  |
|-------------|----------------------------------------------------------|--------------------|----------------------------------------------------------|-------------|
| Ball Number | Signal Name                                              | <b>Ball Number</b> | Signal Name                                              | Ball Number |
| E11         | DDRRESET                                                 | F24                | DDRD08                                                   | H8          |
| E12         | DDRWE                                                    | F25                | DDRD07                                                   | H9          |
| E13         | DDRODT1                                                  | F26                | DVDD15                                                   | H10         |
| E14         | VREFSSTL                                                 | F27                | VSS                                                      | H11         |
| E15         | DDRA09                                                   | F28                | DVDD15                                                   | H12         |
| E16         | DDRA10                                                   | F29                | VSS                                                      | H13         |
| E17         | DDRA12                                                   | G1                 | VSS                                                      | H14         |
| E18         | DDRCKE1                                                  | G2                 | DVDD15                                                   | H15         |
| E19         | DDRCB00                                                  | G3                 | VSS                                                      | H16         |
| E20         | VSS                                                      | G4                 | DVDD15                                                   | H17         |
| E21         | DDRD26                                                   | G5                 | VSS                                                      | H18         |
| E22         | DDRD23                                                   | G6                 | VSS                                                      | H19         |
| E23         | DDRD19                                                   | G7                 | VSS                                                      | H20         |
| E24         | DDRD09                                                   | G8                 | DVDD15                                                   | H21         |
| E25         | DDRD10                                                   | G9                 | VSS                                                      | H22         |
| E26         | DDRD06                                                   | G10                | DVDD15                                                   | H23         |
| E27         | DDRD02                                                   | G11                | VSS                                                      | H24         |
| E28         | DDRD00                                                   | G12                | DVDD15                                                   | H25         |
| E29         | DDRDQM0                                                  | G13                | VSS                                                      | H25         |
| F1          | DDRD63                                                   | G14                | DVDD15                                                   | H26         |
| F2          | DDRD60                                                   | G15                | VSS                                                      | H27         |
| F3          | DDRD61                                                   | G16                | DVDD15                                                   | H28         |
| F4          | DDRD56                                                   | G17                | VSS                                                      | H29         |
| F5          | DVDD15                                                   | G18                | DVDD15                                                   | J1          |
| F6          | VSS                                                      | G19                | VSS                                                      | J2          |
| F7          | DVDD15                                                   | G20                | DVDD15                                                   | J3          |
| F8          | VSS                                                      | G21                | VSS                                                      | J4          |
| F9          | DVDD15                                                   | G22                | PTV15                                                    | J5          |
| F10         | VSS                                                      | G23                | DVDD15                                                   | J6          |
| F11         | DVDD15                                                   | G24                | VSS                                                      | J7          |
| F12         | VSS                                                      | G25                | RSV21                                                    | J8          |
| F13         | DDRA03                                                   | G26                | MDIO                                                     | J9          |
| F14         | DDRA02                                                   | G27                | DDRSLRATE0                                               | J10         |
| F15         | DDRA08                                                   | G28                | RSV07                                                    | J11         |
| F16         | VSS                                                      | G29                | DDRCLKP                                                  | J12         |
| F17         | DVDD15                                                   | H1                 | VSS                                                      | J13         |
| F18         | VSS                                                      | H2                 | VSS                                                      | J14         |
| F19         | DVDD15                                                   | H3                 | VSS                                                      | J15         |
| F20         | DDRD25                                                   | H4                 | VSS                                                      | J16         |
| F21         | DDRD27                                                   | H5                 | VSS                                                      | J17         |
| F22         | DDRD17                                                   | H6                 | VSS                                                      | J18         |
| F23         | DDRD16                                                   | H7                 | CVDD                                                     | J19         |

| Ball Number | Signal Name |
|-------------|-------------|
| H8          | VSS         |
| H9          | CVDD        |
| H10         | VSS         |
| H11         | CVDD        |
| H12         | VSS         |
| H13         | CVDD        |
| H14         | VSS         |
| H15         | CVDD        |
| H16         | VSS         |
| H17         | CVDD        |
| H18         | VSS         |
| H19         | CVDD        |
| H20         | VSS         |
| H21         | CVDD        |
| H22         | AVDDA1      |
| H23         | VCNTL3      |
| H24         | DVDD18      |
| H25         | GPIO00      |
| H25         | LENDIAN †   |
| H26         | MDCLK       |
| H27         | DDRSLRATE1  |
| H28         | RSV06       |
| H29         | DDRCLKN     |
| J1          | VSS         |
| J2          | VSS         |
| J3          | VSS         |
| J4          | VSS         |
| J5          | VSS         |
| J6          | VSS         |
| J7          | VSS         |
| J8          | CVDD1       |
| J9          | VSS         |
| J10         | CVDD        |
| J11         | VSS         |
| J12         | CVDD        |
| J13         | VSS         |
| J14         | CVDD1       |
| J15         | VSS         |
| J16         | CVDD        |
| J17         | VSS         |
| J18         | CVDD        |
| J19         | VSS         |
|             | <u> </u>    |

Table 2-29

**Terminal Functions** 

SPRS708E—March 2014

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Part 7 of 21) |
|-------------|----------------------------------------------------------|
| Ball Number | Signal Name                                              |
| J20         | CVDD                                                     |
| J21         | VSS                                                      |
| 22          | RSV11                                                    |
| 23          | VCNTL2                                                   |
| 24          | GPIO06                                                   |
| 24          | BOOTMODE05 †                                             |
| 25          | GPIO04                                                   |
| 25          | BOOTMODE03 †                                             |
| 26          | GPIO03                                                   |
| 26          | BOOTMODE02 †                                             |
| 27          | GPIO05                                                   |
| 27          | BOOTMODE04 †                                             |
| 28          | GPIO01                                                   |
| 28          | BOOTMODE00 †                                             |
| 29          | GPIO02                                                   |
| 29          | BOOTMODE01†                                              |
| (1          | VSS                                                      |
| (2          | VSS                                                      |
| (3          | VSS                                                      |
| (4          | VSS                                                      |
| (5          | VSS                                                      |
| 6           | VSS                                                      |
| 7           | CVDD1                                                    |
| (8          | VSS                                                      |
| (9          | CVDD1                                                    |
| (10         | VSS                                                      |
| (11         | CVDD                                                     |
| (12         | VSS                                                      |
| (13         | CVDD1                                                    |
| (14         | VSS                                                      |
| (15         | CVDD1                                                    |
| (16         | VSS                                                      |
| 17          | CVDD                                                     |
| (18         | VSS                                                      |
| (19         | CVDD                                                     |
| (20         | VSS                                                      |
| (21         | CVDD                                                     |
| (22         | RSV10                                                    |
| (23         | VCNTL1                                                   |
| 24          | GPIO14                                                   |
| (24         | PCIESSMODE0 †                                            |
| <25         | GPIO13                                                   |
|             | 1                                                        |

|             | — By Ball Number<br>(Part 8 of 21) |
|-------------|------------------------------------|
| Ball Number | Signal Name                        |
| K25         | BOOTMODE12 †                       |
| K26         | GPIO09                             |
| K26         | BOOTMODE08 †                       |
| K27         | GPIO07                             |
| K27         | BOOTMODE06 †                       |
| K28         | GPIO08                             |
| K28         | BOOTMODE07 †                       |
| K29         | GPIO10                             |
| K29         | BOOTMODE09 †                       |
| L1          | VSS                                |
| L2          | VSS                                |
| L3          | VSS                                |
| L4          | VSS                                |
| L5          | VSS                                |
| L6          | VSS                                |
| L7          | VSS                                |
| L8          | CVDD1                              |
| L9          | VSS                                |
| L10         | CVDD                               |
| L11         | VSS                                |
| L12         | CVDD                               |
| L13         | VSS                                |
| L14         | CVDD1                              |
| L15         | VSS                                |
| L16         | CVDD                               |
| L17         | VSS                                |
| L18         | CVDD                               |
| L19         | VSS                                |
| L20         | CVDD1                              |
| L21         | VSS                                |
| L22         | CVDD1                              |
| L23         | VCNTL0                             |
| L24         | ТІМІО                              |
| L24         | PCIESSEN †                         |
| L25         | TIMO0                              |
| L26         | TIMI1                              |
| L27         | GPIO15                             |
| L27         | PCIESSMODE1 †                      |
| L28         | GPIO11                             |
| L28         | BOOTMODE10 †                       |
| L29         | GPIO12                             |
| L29         | BOOTMODE11 †                       |
|             |                                    |



Table 2-29 Terminal Functions — By Ball Number (Dant 0, ef 21)

| (Part 9 of 21) |             |  |
|----------------|-------------|--|
| Ball Number    | Signal Name |  |
| M1             | MCMRXN2     |  |
| M2             | VSS         |  |
| M3             | VSS         |  |
| M4             | VSS         |  |
| M5             | MCMTXN0     |  |
| M6             | VSS         |  |
| M7             | VDDT1       |  |
| M8             | VSS         |  |
| M9             | CVDD1       |  |
| M10            | VSS         |  |
| M11            | CVDD        |  |
| M12            | VSS         |  |
| M13            | CVDD        |  |
| M14            | VSS         |  |
| M15            | CVDD        |  |
| M16            | VSS         |  |
| M17            | CVDD        |  |
| M18            | VSS         |  |
| M19            | CVDD        |  |
| M20            | VSS         |  |
| M21            | CVDD1       |  |
| M22            | VSS         |  |
| M25            | NMI         |  |
| M26            | TIMO1       |  |
| M27            | LRESETNMIEN |  |
| M28            | VSS         |  |
| M29            | RESET       |  |
| N1             | MCMRXP2     |  |
| N2             | MCMRXP3     |  |
| N3             | VSS         |  |
| N4             | МСМТХИЗ     |  |
| N5             | МСМТХРО     |  |
| N6             | VDDT1       |  |
| N7             | VSS         |  |
| N8             | CVDD        |  |
| N9             | VSS         |  |
| N10            | CVDD        |  |
| N11            | VSS         |  |
| N12            | CVDD        |  |
| N13            | VSS         |  |
| N14            | CVDD        |  |
| N15            | VSS         |  |



SPRS708E—March 2014

Terminal Functions — By Ball Number

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Part 10 of 21) | Table 2-29         | Terminal Functions<br>— By Ball Number<br>(Part 11 of 21) | Table 2-29 |
|-------------|-----------------------------------------------------------|--------------------|-----------------------------------------------------------|------------|
| Ball Number | Signal Name                                               | <b>Ball Number</b> | Signal Name                                               | Ball Numbe |
| N16         | CVDD                                                      | P29                | TMS                                                       | T13        |
| N17         | VSS                                                       | R1                 | MCMRXP1                                                   | T14        |
| N18         | CVDD                                                      | R2                 | VSS                                                       | T15        |
| N19         | VSS                                                       | R3                 | VSS                                                       | T16        |
| N20         | CVDD1                                                     | R4                 | VSS                                                       | T17        |
| N21         | VSS                                                       | R5                 | MCMTXN2                                                   | T18        |
| N22         | CVDD1                                                     | R6                 | VDDT1                                                     | T19        |
| N23         | RSV03                                                     | R7                 | VSS                                                       | T20        |
| N24         | RSV02                                                     | R8                 | CVDD                                                      | T21        |
| N25         | RESETFULL                                                 | R9                 | VSS                                                       | T22        |
| N26         | LRESET                                                    | R10                | CVDD                                                      | T23        |
| N27         | RESETSTAT                                                 | R11                | VSS                                                       | T24        |
| N28         | DVDD18                                                    | R12                | CVDD1                                                     | T25        |
| N29         | ТСК                                                       | R13                | VSS                                                       | T26        |
| P1          | VSS                                                       | R14                | CVDD1                                                     | T27        |
| P2          | MCMRXN3                                                   | R15                | VSS                                                       | T28        |
| Р3          | VSS                                                       | R16                | CVDD1                                                     | T29        |
| P4          | МСМТХР3                                                   | R17                | VSS                                                       | U1         |
| P5          | VSS                                                       | R18                | CVDD                                                      | U2         |
| P6          | VSS                                                       | R19                | VSS                                                       | U3         |
| P7          | VDDT1                                                     | R20                | CVDD                                                      | U4         |
| P8          | VSS                                                       | R21                | VSS                                                       | U5         |
| Р9          | CVDD                                                      | R22                | CVDD                                                      | U6         |
| P10         | VSS                                                       | R23                | EMIFBE1                                                   | U7         |
| P11         | CVDD                                                      | R24                | EMIFBEO                                                   | U8         |
| P12         | VSS                                                       | R25                | EMIFCE3                                                   | U9         |
| P13         | CVDD                                                      | R26                | EMIFOE                                                    | U10        |
| P14         | VSS                                                       | R27                | EMIFCE1                                                   | U11        |
| P15         | CVDD                                                      | R28                | EMIFCE2                                                   | U12        |
| P16         | VSS                                                       | R29                | TDO                                                       | U13        |
| P17         | CVDD                                                      | T1                 | MCMRXN1                                                   | U14        |
| P18         | VSS                                                       | T2                 | MCMRXP0                                                   | U15        |
| P19         | CVDD                                                      | Т3                 | VSS                                                       | U16        |
| P20         | VSS                                                       | T4                 | MCMTXN1                                                   | U17        |
| P21         | CVDD                                                      | T5                 | MCMTXP2                                                   | U18        |
| P22         | VSS                                                       | Т6                 | VSS                                                       | U19        |
| P23         | DVDD18                                                    | T7                 | VDDT1                                                     | U20        |
| P24         | EMIFWE                                                    | Т8                 | VSS                                                       | U21        |
| P25         | EMIFCEO                                                   | Т9                 | CVDD                                                      | U22        |
| P26         | EMIFRW                                                    | T10                | VSS                                                       | U23        |
| P27         | TDI                                                       | T11                | CVDD                                                      | U24        |
| P28         | TRST                                                      | T12                | VSS                                                       | U25        |

|             | — By Ball Number<br>(Part 12 of 21) |
|-------------|-------------------------------------|
| Ball Number | Signal Name                         |
| T13         | CVDD                                |
| T14         | VSS                                 |
| T15         | CVDD                                |
| T16         | VSS                                 |
| T17         | CVDD                                |
| T18         | VSS                                 |
| T19         | CVDD                                |
| T20         | VSS                                 |
| T21         | CVDD                                |
| T22         | VSS                                 |
| T23         | DVDD18                              |
| T24         | EMIFA01                             |
| T25         | EMIFA03                             |
| T26         | VSS                                 |
| T27         | EMIFA00                             |
| T28         | EMIFWAIT1                           |
| T29         | EMIFWAITO                           |
| U1          | VSS                                 |
| U2          | MCMRXN0                             |
| U3          | VSS                                 |
| U4          | MCMTXP1                             |
| U5          | VSS                                 |
| U6          | VDDT1                               |
| U7          | VSS                                 |
| U8          | CVDD                                |
| U9          | VSS                                 |
| U10         | CVDD                                |
| U11         | VSS                                 |
| U12         | CVDD1                               |
| U13         | VSS                                 |
| U14         | CVDD1                               |
| U15         | VSS                                 |
| U16         | CVDD1                               |
| U17         | VSS                                 |
| U18         | CVDD                                |
| U19         | VSS                                 |
| U20         | CVDD                                |
| U21         | VSS                                 |
| U22         | CVDD                                |
| U23         | EMIFA23                             |
| U24         | EMIFA07                             |
|             |                                     |

SPRS708E—March 2014

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Part 13 of 21) |
|-------------|-----------------------------------------------------------|
| Ball Number | Signal Name                                               |
| U26         | DVDD18                                                    |
| U27         | EMIFA04                                                   |
| U28         | EMIFA05                                                   |
| U29         | EMIFA02                                                   |
| V1          | VSS                                                       |
| V2          | VSS                                                       |
| V3          | VSS                                                       |
| V4          | VSS                                                       |
| V5          | VDDR1                                                     |
| V6          | VSS                                                       |
| V7          | VDDT1                                                     |
| V8          | VSS                                                       |
| V9          | CVDD                                                      |
| V10         | VSS                                                       |
| V11         | CVDD                                                      |
| V12         | VSS                                                       |
| V13         | CVDD1                                                     |
| V14         | VSS                                                       |
| V15         | CVDD1                                                     |
| V16         | VSS                                                       |
| V17         | CVDD                                                      |
| V18         | VSS                                                       |
| V19         | CVDD                                                      |
| V20         | VSS                                                       |
| V21         | CVDD                                                      |
| V22         | VSS                                                       |
| V23         | DVDD18                                                    |
| V24         | EMIFA13                                                   |
| V25         | EMIFA12                                                   |
| V26         | EMIFA11                                                   |
| V27         | EMIFA10                                                   |
| V28         | EMIFA08                                                   |
| V29         | EMIFA09                                                   |
| W1          | MCMREFCLKOUTN                                             |
| W2          | MCMCLKP                                                   |
| W3          | MCMRXFLCLK                                                |
| W4          | MCMRXFLDAT                                                |
| W5          | RSV13                                                     |
| W6          | RSV14                                                     |
| W7          | VSS                                                       |
| W8          | CVDD                                                      |
| W9          | VSS                                                       |

| Table 2-29  | Terminal Functions<br>— By Ball Number |
|-------------|----------------------------------------|
| Ball Number | (Part 14 of 21)                        |
| W10         | Signal Name                            |
|             | CVDD                                   |
| W11         | VSS                                    |
| W12         | CVDD1                                  |
| W13         | VSS                                    |
| W14         | CVDD1                                  |
| W15         | VSS                                    |
| W16         | CVDD1                                  |
| W17         | VSS                                    |
| W18         | CVDD                                   |
| W19         | VSS                                    |
| W20         | CVDD                                   |
| W21         | VSS                                    |
| W22         | CVDD                                   |
| W23         | EMIFA20                                |
| W24         | EMIFA19                                |
| W25         | EMIFA18                                |
| W26         | EMIFA17                                |
| W27         | EMIFA15                                |
| W28         | EMIFA14                                |
| W29         | EMIFA16                                |
| Y1          | MCMREFCLKOUTP                          |
| Y2          | MCMCLKN                                |
| Y3          | MCMRXPMCLK                             |
| Y4          | MCMRXPMDAT                             |
| Y5          | RSV12                                  |
| Y6          | VSS                                    |
| Y7          | DVDD18                                 |
| Y8          | VSS                                    |
| Y9          | CVDD                                   |
| Y10         | VSS                                    |
| Y11         | CVDD                                   |
| Y12         | VSS                                    |
| Y13         | CVDD                                   |
| Y14         | VSS                                    |
| Y15         | CVDD                                   |
|             | VSS                                    |
| Y16         |                                        |
| Y17         | CVDD                                   |
| Y18         | VSS                                    |
| Y19         | CVDD                                   |
| Y20         | VSS                                    |
| Y21         | CVDD                                   |
| Y22         | VSS                                    |

| TEX | AS       |
|-----|----------|
| INS | TRUMENTS |

Table 2-29

# **Terminal Functions** — By Ball Number (Part 15 of 21)

| Ball Number | Signal Name |
|-------------|-------------|
| Y23         | DVDD18      |
| Y24         | EMIFD11     |
| Y25         | EMIFD08     |
| Y26         | EMIFD03     |
| Y27         | EMIFD00     |
| Y28         | EMIFA22     |
| Y29         | EMIFA21     |
| AA1         | MCMTXFLCLK  |
| AA2         | MCMTXPMCLK  |
| AA3         | MCMTXFLDAT  |
| AA4         | MCMTXPMDAT  |
| AA5         | VSS         |
| AA6         | DVDD18      |
| AA7         | VSS         |
| AA8         | CVDD        |
| AA9         | VSS         |
| AA10        | CVDD        |
| AA11        | VSS         |
| AA12        | CVDD        |
| AA13        | VSS         |
| AA14        | CVDD        |
| AA15        | VSS         |
| AA16        | CVDD        |
| AA17        | VSS         |
| AA18        | CVDD        |
| AA19        | VSS         |
| AA20        | RSVOB       |
| AA21        | RSVOA       |
| AA22        | CVDD        |
| AA23        | VSS         |
| AA24        | EMIFD10     |
| AA25        | EMIFD07     |
| AA26        | EMIFD06     |
| AA27        | EMIFD04     |
| AA28        | VSS         |
| AA29        | EMIFD02     |
| AB1         | SPIDOUT     |
| AB2         | UARTRTS     |
| AB3         | UARTCTS     |
| AB4         | VSS         |
| AB5         | DVDD18      |
| AB6         | VSS         |



Table 2-29

SPRS708E—March 2014

**Terminal Functions** 

| able 2-29   | Terminal Functions<br>— By Ball Number<br>(Part 16 of 21) | Table 2-29         | Terminal Func<br>— By Ball Num<br>(Part 17 of 21) |
|-------------|-----------------------------------------------------------|--------------------|---------------------------------------------------|
| Ball Number | Signal Name                                               | <b>Ball Number</b> | Signal Name                                       |
| AB7         | DVDD18                                                    | AC20               | POR                                               |
| AB8         | VSS                                                       | AC21               | TR12                                              |
| AB9         | VDDT2                                                     | AC22               | TX12                                              |
| AB10        | VSS                                                       | AC23               | TR04                                              |
| AB11        | VDDT2                                                     | AC24               | TR06                                              |
| AB12        | VSS                                                       | AC25               | EMIFD15                                           |
| AB13        | VDDT2                                                     | AC26               | EMU03                                             |
| AB14        | VSS                                                       | AC27               | EMU02                                             |
| AB15        | VDDT2                                                     | AC28               | EMU01                                             |
| AB16        | VSS                                                       | AC29               | EMU00                                             |
| AB17        | VDDT2                                                     | AD1                | UARTRXD                                           |
| AB18        | VSS                                                       | AD2                | SPIDIN                                            |
| AB19        | DVDD18                                                    | AD3                | SCL                                               |
| AB20        | VSS                                                       | AD4                | CORESEL1                                          |
| AB21        | DVDD18                                                    | AD5                | AVDDA3                                            |
| AB22        | VSS                                                       | AD6                | VSS                                               |
| AB23        | EMIFD12                                                   | AD7                | VDDT2                                             |
| AB24        | EMIFD13                                                   | AD8                | VSS                                               |
| AB25        | EMIFD09                                                   | AD9                | VDDT2                                             |
| AB26        | EMIFD14                                                   | AD10               | VSS                                               |
| AB27        | EMIFD05                                                   | AD11               | VDDT2                                             |
| AB28        | DVDD18                                                    | AD12               | VSS                                               |
| AB29        | EMIFD01                                                   | AD13               | VDDT2                                             |
| AC1         | UARTTXD                                                   | AD14               | VSS                                               |
| AC2         | VSS                                                       | AD15               | VDDT2                                             |
| AC3         | DVDD18                                                    | AD16               | VSS                                               |
| AC4         | SDA                                                       | AD17               | VDDT2                                             |
| AC5         | VSS                                                       | AD18               | VSS                                               |
| AC6         | AVDDA2                                                    | AD19               | RSV17                                             |
| AC7         | VSS                                                       | AD20               | HOUT                                              |
| AC8         | VDDT2                                                     | AD21               | TR11                                              |
| AC9         | RSV16                                                     | AD22               | TX11                                              |
| AC10        | VDDT2                                                     | AD23               | TR02                                              |
| AC11        | VSS                                                       | AD24               | TR03                                              |
| AC12        | VDDT2                                                     | AD25               | TX01                                              |
| AC13        | VSS                                                       | AD26               | EMU13                                             |
| AC14        | VDDT2                                                     | AD27               | EMU06                                             |
| AC15        | VSS                                                       | AD28               | EMU05                                             |
| AC16        | VDDT2                                                     | AD29               | EMU04                                             |
| AC17        | VSS                                                       | AE1                | SPICLK                                            |
| AC18        | VDDT2                                                     | AE2                | BOOTCOMPLETE                                      |
| AC19        | VSS                                                       | AE3                | SYSCLKOUT                                         |

| able 2-29   | Terminal Function<br>— By Ball Number<br>(Part 18 of 21) |  |
|-------------|----------------------------------------------------------|--|
| Ball Number | Signal Name                                              |  |
| AE4         | PACLKSEL                                                 |  |
| AE5         | CORESEL3                                                 |  |
| AE6         | CORESEL2                                                 |  |
| AE7         | VSS                                                      |  |
| AE8         | VSS                                                      |  |
| AE9         | VSS                                                      |  |
| AE10        | VDDR2                                                    |  |
| AE11        | VSS                                                      |  |
| AE12        | RSV15                                                    |  |
| AE13        | VSS                                                      |  |
| AE14        | VDDR4                                                    |  |
| AE15        | VSS                                                      |  |
| AE16        | VDDR3                                                    |  |
| AE17        | VSS                                                      |  |
| AE18        | VDDT2                                                    |  |
| AE19        | VSS                                                      |  |
| AE20        | TX15                                                     |  |
| AE21        | TX13                                                     |  |
| AE22        | TR10                                                     |  |
| AE23        | TX06                                                     |  |
| AE24        | TX00                                                     |  |
| AE25        | TR07                                                     |  |
| AE26        | VSS                                                      |  |
| AE27        | EMU10                                                    |  |
| AE28        | EMU08                                                    |  |
| AE29        | EMU07                                                    |  |
| AF1         | RSV22                                                    |  |
| AF2         | CORESELO                                                 |  |
| AF3         | RSV20                                                    |  |
| AF4         | VSS                                                      |  |
| AF5         | DVDD18                                                   |  |
| AF6         | VSS                                                      |  |
| AF7         | PCIETXP0                                                 |  |
| AF8         | PCIETXNO                                                 |  |
| AF9         | VSS                                                      |  |
| AF10        | RIOTXNO                                                  |  |
| AF11        | RIOTXPO                                                  |  |
| AF12        | VSS                                                      |  |
| AF13        | RIOTXP3                                                  |  |
| AF14        | RIOTXN3                                                  |  |
| AF15        | VSS                                                      |  |
| AF16        | SGMII1TXP                                                |  |
|             | JUMITTAF                                                 |  |

SPRS708E—March 2014

| Table 2-29  | Terminal Functions<br>— By Ball Number<br>(Bart 10 of 21) |
|-------------|-----------------------------------------------------------|
| B 11 11     | (Part 19 of 21)                                           |
| Ball Number | Signal Name                                               |
| AF17        | SGMII1TXN                                                 |
| AF18        | VSS                                                       |
| AF19        | RSV09                                                     |
| AF20        | TX17                                                      |
| AF21        | TX10                                                      |
| AF22        | VSS                                                       |
| AF23        | TX07                                                      |
| AF24        | TX05                                                      |
| AF25        | CLKAO                                                     |
| AF26        | DVDD18                                                    |
| AF27        | EMU17                                                     |
| AF28        | EMU11                                                     |
| AF29        | EMU09                                                     |
| AG1         | SPISCSO                                                   |
| AG2         | SPISCS1                                                   |
| AG3         | CORECLKP                                                  |
| AG4         | CORECLKN                                                  |
| AG5         | PCIECLKP                                                  |
| AG6         | SRIOSGMIICLKP                                             |
| AG7         | VSS                                                       |
| AG8         | PCIETXP1                                                  |
| AG9         | PCIETXN1                                                  |
| AG10        | VSS                                                       |
| AG11        | RIOTXN1                                                   |
| AG12        | RIOTXP1                                                   |
| AG13        | VSS                                                       |
| AG14        | RIOTXP2                                                   |
| AG15        | RIOTXN2                                                   |
| AG16        | VSS                                                       |
| AG17        | SGMII0TXP                                                 |
| AG18        | SGMII0TXN                                                 |
| AG19        | VSS                                                       |
| AG20        | TX14                                                      |
| AG21        | TR17                                                      |
| AG22        | DVDD18                                                    |
| AG23        | FSA1                                                      |
| AG24        | TX03                                                      |
| AG25        | CLKB0                                                     |
| AG26        | FSB0                                                      |
| AG27        | EMU15                                                     |
| AG28        | EMU14                                                     |
| AG29        | EMU12                                                     |

| Table 2-29  | Terminal Functions<br>— By Ball Number |
|-------------|----------------------------------------|
|             | (Part 20 of 21)                        |
| Ball Number | Signal Name                            |
| AH1         | DVDD18                                 |
| AH2         | RSV04                                  |
| AH3         | RSV25                                  |
| AH4         | RSV24                                  |
| AH5         | PCIECLKN                               |
| AH6         | VSS                                    |
| AH7         | PCIERXN0                               |
| AH8         | PCIERXP0                               |
| AH9         | VSS                                    |
| AH10        | RIORXN1                                |
| AH11        | RIORXP1                                |
| AH12        | VSS                                    |
| AH13        | RIORXP2                                |
| AH14        | RIORXN2                                |
| AH15        | VSS                                    |
| AH16        | SGMII1RXP                              |
| AH17        | SGMII1RXN                              |
| AH18        | VSS                                    |
| AH19        | RSV08                                  |
| AH20        | TX16                                   |
| AH21        | TR16                                   |
| AH22        | TR14                                   |
| AH23        | CLKB1                                  |
| AH24        | TX04                                   |
| AH25        | TR05                                   |
| AH26        | TR00                                   |
| AH27        | EMU18                                  |
| AH28        | RSV01                                  |
| AH29        | DVDD18                                 |
| AJ1         | VSS                                    |
| AJ2         | DVDD18                                 |
| AJ3         | RSV05                                  |
| AJ4         | PASSCLKN                               |
| AJ5         | PASSCLKP                               |
| AJ6         | SRIOSGMIICLKN                          |
| AJ7         | VSS                                    |
| AJ8         | PCIERXP1                               |
| AJ9         | PCIERXN1                               |
| AJ10        | VSS                                    |
| AJ11        | RIORXN0                                |
| AJ12        | RIORXP0                                |
| AJ13        | VSS                                    |
|             |                                        |

TEXAS INSTRUMENTS

Terminal Functions — By Ball Number (Part 21 of 21)

Table 2-29

| (Part 21 01 21)   |             |  |
|-------------------|-------------|--|
| Ball Number       | Signal Name |  |
| AJ14              | RIORXP3     |  |
| AJ15              | RIORXN3     |  |
| AJ16              | VSS         |  |
| AJ17              | SGMIIORXP   |  |
| AJ18              | SGMIIORXN   |  |
| AJ19              | VSS         |  |
| AJ20              | TR15        |  |
| AJ21              | TR13        |  |
| AJ22              | FSB1        |  |
| AJ23              | CLKA1       |  |
| AJ24              | TX02        |  |
| AJ25              | TR01        |  |
| AJ26              | FSA0        |  |
| AJ27              | EMU16       |  |
| AJ28              | DVDD18      |  |
| AJ29              | VSS         |  |
| End of Table 2-29 |             |  |



2.9 Development and Support

## 2.9.1 Development Support

In case the customer would like to develop their own features and software on the C6672 device, TI offers an extensive line of development tools for the TMS320C6000<sup>™</sup> DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio<sup>™</sup> Integrated Development Environment (IDE).

The following products support development of C6000<sup>™</sup> DSP-based applications:

- Software Development Tools:
  - Code Composer Studio<sup>™</sup> Integrated Development Environment (IDE), including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools.
  - Scalable, Real-Time Foundation Software (DSP/BIOS<sup>™</sup>), which provides the basic run-time target software needed to support any DSP application.
- Hardware Development Tools:
  - Extended Development System (XDS<sup>™</sup>) Emulator (supports C6000<sup>™</sup> DSP multiprocessor system debug)
  - EVM (Evaluation Module)

## 2.9.2 Device Support

## 2.9.2.1 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMX320CMH). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

- TMX: Experimental device that is not necessarily representative of the final device's electrical specifications
- **TMP:** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification
- TMS: Fully qualified production device

Support tool development evolutionary flow:

- **TMDX:** Development-support product that has not yet completed Texas Instruments internal qualification testing.
- TMDS: Fully qualified development-support product

## TMX and TMP devices and TMDX development-support tools are shipped with the following disclaimer: "Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.



TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, CYP), the temperature range (for example, blank is the default case temperature range), and the device speed range, in Megahertz (for example, blank is 1000 MHz [1 GHz]).

For device part numbers and further ordering information for TMS320C6672 in the CYP package type, see the TI website www.ti.com or contact your TI sales representative.

Figure 2-17 provides a legend for reading the complete device name for any C66x KeyStone device.

### Figure 2-17 C66x DSP Device Nomenclature (including the TMS320C6672)





### 2.10 Related Documentation from Texas Instruments

These documents describe the TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor. Copies of these documents are available on the Internet at www.ti.com

| C66x DSP CorePac User Guide                                                                               | SPRUGW0 |
|-----------------------------------------------------------------------------------------------------------|---------|
| C66x DSP CPU and Instruction Set Reference Guide                                                          | SPRUGH7 |
| C66x DSP Cache User Guide                                                                                 | SPRUGY8 |
| Chip Interrupt Controller (CIC) for KeyStone Devices User Guide                                           | SPRUGW4 |
| DDR3 Design Requirements for KeyStone Devices                                                             | SPRABI1 |
| DDR3 Memory Controller for KeyStone Devices User Guide                                                    | SPRUGV8 |
| Debug and Trace for KeyStone I Devices User Guide                                                         | SPRUGZ2 |
| DSP Bootloader for KeyStone Devices User Guide                                                            | SPRUGY5 |
| Emulation and Trace Headers Technical Reference                                                           | SPRU655 |
| Enhanced Direct Memory Access 3 (EDMA3) Controller for KeyStone Devices User Guide                        | SPRUGS5 |
| External Memory Interface (EMIF16) for KeyStone Devices User Guide                                        | SPRUGZ3 |
| General Purpose Input/Output (GPIO) for KeyStone Devices User Guide                                       | SPRUGV1 |
| Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide                                   | SPRUGV9 |
| Hardware Design Guide for KeyStone I Devices                                                              | SPRABI2 |
| HyperLink for KeyStone Devices User Guide                                                                 | SPRUGW8 |
| Inter -IC Control Bus (I <sup>2</sup> C) for KeyStone Devices User Guide                                  | SPRUGV3 |
| Memory Protection Unit (MPU) for KeyStone Devices User Guide                                              | SPRUGW5 |
| Multicore Navigator for KeyStone Devices User Guide                                                       | SPRUGR9 |
| Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide                                 | SPRUGW7 |
| Network Coprocessor (NETCP) for KeyStone Devices User Guide                                               | SPRUGZ6 |
| Packet Accelerator (PA) for KeyStone Devices User Guide                                                   | SPRUGS4 |
| Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide                          | SPRUGS6 |
| Phase Locked Loop (PLL) for KeyStone Devices User Guide                                                   | SPRUGV2 |
| Power Consumption Summary for KeyStone C66x Devices                                                       | SPRABL5 |
| Power Sleep Controller (PSC) for KeyStone Devices User Guide                                              | SPRUGV4 |
| Security Accelerator (SA) for KeyStone Devices User Guide                                                 | SPRUGY6 |
| Semaphore2 Hardware Module for KeyStone Devices User Guide                                                | SPRUGS3 |
| Serial Peripheral Interface (SPI) for KeyStone Devices User Guide                                         | SPRUGP2 |
| Serial RapidIO (SRIO) for KeyStone Devices User Guide                                                     | SPRUGW1 |
| Telecom Serial Interface Port (TSIP) for the C66x DSP User Guide                                          | SPRUGY4 |
| Timer64P for KeyStone Devices User Guide                                                                  | SPRUGV5 |
| Universal Asynchronous Receiver/Transmitter (UART) for KeyStone Devices User Guide                        | SPRUGP1 |
| Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems | SPRA387 |
| Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs                               | SPRA753 |
| Using IBIS Models for Timing Analysis                                                                     | SPRA839 |


# **3** Device Configuration

On the TMS320C6672 device, certain device configurations like boot mode and endianess, are selected at device power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on reset.

## 3.1 Device Configuration at Device Reset

Table 3-1 describes the device configuration pins. The logic level is latched at power-on reset to determine the device configuration. The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device, care should be taken to ensure there is no contention on the lines when the device is out of reset. The device configuration pins are sampled during power-on reset and are driven after the reset is removed. To avoid contention, the control device must stop driving the device configuration pins of the DSP. And when driving by a control device, the control device must be fully powered and out of reset itself and driving the pins before the DSP can be taken out of reset.

Also, note that most of the device configuration pins are shared with other function pins (LENDIAN/GPIO[0], BOOTMODE[12:0]/GPIO[13:1], PCIESSMODE[1:0]/GPIO[15:14] and PCIESSEN/TIMI0), some time must be given following the rising edge of reset in order to drive these device configuration input pins before they assume an output state (those GPIO pins should not become outputs during boot). Another caution that must be noted is that systems using TIMI0 (pin shared with PCIESSEN) as a clock input must assure that the clock itself is disabled from the input until after reset is released and a control device is no longer driving that input.

**Note**—If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown resistors and situations in which external pullup/pulldown resistors are required, see Section 3.4 "Pullup/Pulldown Resistors" on page 94.

| <b>Configuration Pin</b>           | Pin No.                                                                  | IPD/IPU <sup>(1)</sup> | Functional Description                                                                                                                                                                                                                                                                    |
|------------------------------------|--------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LENDIAN <sup>(1) (2)</sup>         | H25                                                                      | IPU                    | Device endian mode (LENDIAN).<br>0 = Device operates in big endian mode<br>1 = Device operates in little endian mode                                                                                                                                                                      |
| BOOTMODE[12:0] <sup>(1) (2)</sup>  | J28, J29, J26, J25,<br>J27, J24, K27, K28,<br>K26, K29, L28, L29,<br>K25 | IPD                    | Method of boot.<br>Some pins may not be used by bootloader and can be used as general purpose config<br>pins. See the <i>Bootloader for the C66x DSP User Guide</i> in "Related Documentation from<br>Texas Instruments" on page 72 for how to determine the device enumeration ID value. |
| PCIESSMODE[1:0] <sup>(1) (2)</sup> | L27, K24                                                                 | IPD                    | PCIe Subsystem mode selection.<br>00 = PCIe in end point mode<br>01 = PCIe legacy end point (support for legacy INTx)<br>10 = PCIe in root complex mode<br>11 = Reserved                                                                                                                  |
| PCIESSEN <sup>(1)(2)</sup>         | L24                                                                      | IPD                    | PCIe subsystem enable/disable.<br>0 = PCIE Subsystem is disabled<br>1 = PCIE Subsystem is enabled                                                                                                                                                                                         |
| PACLKSEL <sup>(1)</sup>            | AE4                                                                      | IPD                    | Network Coprocessor (PASS PLL) input clock select.<br>0 = CORECLK is used as the input to PASS PLL<br>1 = PASSCLK is used as the input to PASS PLL                                                                                                                                        |

#### Table 3-1 TMS320C6672 Device Configuration Pins

End of Table 3-1

 Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Section 3.4 "Pullup/Pulldown Resistors" on page 94.

2 These signal names are the secondary functions of these pins.



3.2 Peripheral Selection After Device Reset

Several of the peripherals on the TMS320C6672 are controlled by the Power Sleep Controller (PSC). By default, the PCIe, SRIO, and HyperLink are held in reset and clock-gated. The memories in these modules are also in a low-leakage sleep mode. Software is required to turn these memories on. The software enables the modules (turns on clocks and de-asserts reset) before these modules can be used.

If one of the above modules is used in the selected ROM boot mode, the ROM code will automatically enable the module.

All other modules come up enabled by default and there is no special software sequence to enable. For more detailed information on the PSC usage, see the *Power Sleep Controller (PSC) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

## 3.3 Device State Control Registers

The TMS320C6672 device has a set of registers that are used to provide the status or configure certain parts of its peripherals. These registers are shown in Table 3-2.

| Address Start | Address End | Size | Field              | Description                                                            |
|---------------|-------------|------|--------------------|------------------------------------------------------------------------|
| 0x02620000    | 0x02620007  | 8B   | Reserved           |                                                                        |
| 0x02620008    | 0x02620017  | 16B  | Reserved           |                                                                        |
| 0x02620018    | 0x0262001B  | 4B   | JTAGID             | See section 3.3.3                                                      |
| 0x0262001C    | 0x0262001F  | 4B   | Reserved           |                                                                        |
| 0x02620020    | 0x02620023  | 4B   | DEVSTAT            | See section 3.3.1                                                      |
| 0x02620024    | 0x02620037  | 20B  | Reserved           |                                                                        |
| 0x02620038    | 0x0262003B  | 4B   | KICKO              | See section 3.3.4                                                      |
| 0x0262003C    | 0x0262003F  | 4B   | KICK1              |                                                                        |
| 0x02620040    | 0x02620043  | 4B   | DSP_BOOT_ADDR0     | The boot address for C66x DSP CorePac0, see section 3.3.5              |
| 0x02620044    | 0x02620047  | 4B   | DSP_BOOT_ADDR1     | The boot address for C66x DSP CorePac1, see section 3.3.5              |
| 0x02620048    | 0x0262004B  | 4B   | Reserved           |                                                                        |
| 0x0262004C    | 0x0262004F  | 4B   | Reserved           |                                                                        |
| 0x02620050    | 0x02620053  | 4B   | Reserved           |                                                                        |
| 0x02620054    | 0x02620057  | 4B   | Reserved           |                                                                        |
| 0x02620058    | 0x0262005B  | 4B   | Reserved           |                                                                        |
| 0x0262005C    | 0x0262005F  | 4B   | Reserved           |                                                                        |
| 0x02620060    | 0x026200DF  | 128B | Reserved           |                                                                        |
| 0x026200E0    | 0x0262010F  | 48B  | Reserved           |                                                                        |
| 0x02620110    | 0x02620117  | 8B   | MACID              | See section 7.22 "Gigabit Ethernet (GbE) Switch Subsystem" on page 218 |
| 0x02620118    | 0x0262012F  | 24B  | Reserved           |                                                                        |
| 0x02620130    | 0x02620133  | 4B   | LRSTNMIPINSTAT_CLR | See section 3.3.7                                                      |
| 0x02620134    | 0x02620137  | 4B   | RESET_STAT_CLR     | See section 3.3.9                                                      |
| 0x02620138    | 0x0262013B  | 4B   | Reserved           |                                                                        |
| 0x0262013C    | 0x0262013F  | 4B   | BOOTCOMPLETE       | See section 3.3.10                                                     |
| 0x02620140    | 0x02620143  | 4B   | Reserved           |                                                                        |
| 0x02620144    | 0x02620147  | 4B   | RESET_STAT         | See section 3.3.8                                                      |
| 0x02620148    | 0x0262014B  | 4B   | LRSTNMIPINSTAT     | See section 3.3.6                                                      |

 Table 3-2
 Device State Control Registers (Part 1 of 4)



| Table 3-2   Device State Control Registers (Part 2 of 4) |             |      |                      |                                                               |
|----------------------------------------------------------|-------------|------|----------------------|---------------------------------------------------------------|
| Address Start                                            | Address End | Size | Field                | Description                                                   |
| 0x0262014C                                               | 0x0262014F  | 4B   | DEVCFG               | See section 3.3.2                                             |
| 0x02620150                                               | 0x02620153  | 4B   | PWRSTATECTL          | See section 3.3.11                                            |
| 0x02620154                                               | 0x02620157  | 4B   | SRIO_SERDES_STS      | See "Related Documentation from Texas Instruments" on page 72 |
| 0x02620158                                               | 0x0262015B  | 4B   | SMGII_SERDES_STS     |                                                               |
| 0x0262015C                                               | 0x0262015F  | 4B   | PCIE_SERDES_STS      |                                                               |
| 0x02620160                                               | 0x02620163  | 4B   | HYPERLINK_SERDES_STS |                                                               |
| 0x02620164                                               | 0x02620167  | 4B   | Reserved             |                                                               |
| 0x02620168                                               | 0x0262016B  | 4B   | Reserved             |                                                               |
| 0x0262016C                                               | 0x0262017F  | 20B  | Reserved             |                                                               |
| 0x02620180                                               | 0x02620183  | 4B   | Reserved             |                                                               |
| 0x02620184                                               | 0x0262018F  | 12B  | Reserved             |                                                               |
| 0x02620190                                               | 0x02620193  | 4B   | Reserved             |                                                               |
| 0x02620194                                               | 0x02620197  | 4B   | Reserved             |                                                               |
| 0x02620198                                               | 0x0262019B  | 4B   | Reserved             |                                                               |
| 0x0262019C                                               | 0x0262019F  | 4B   | Reserved             |                                                               |
| 0x026201A0                                               | 0x026201A3  | 4B   | Reserved             |                                                               |
| 0x026201A4                                               | 0x026201A7  | 4B   | Reserved             |                                                               |
| 0x026201A8                                               | 0x026201AB  | 4B   | Reserved             |                                                               |
| 0x026201AC                                               | 0x026201AF  | 4B   | Reserved             |                                                               |
| 0x026201B0                                               | 0x026201B3  | 4B   | Reserved             |                                                               |
| 0x026201B4                                               | 0x026201B7  | 4B   | Reserved             |                                                               |
| 0x026201B8                                               | 0x026201BB  | 4B   | Reserved             |                                                               |
| 0x026201BC                                               | 0x026201BF  | 4B   | Reserved             |                                                               |
| 0x026201C0                                               | 0x026201C3  | 4B   | Reserved             |                                                               |
| 0x026201C4                                               | 0x026201C7  | 4B   | Reserved             |                                                               |
| 0x026201C8                                               | 0x026201CB  | 4B   | Reserved             |                                                               |
| 0x026201CC                                               | 0x026201CF  | 4B   | Reserved             |                                                               |
| 0x026201D0                                               | 0x026201FF  | 48B  | Reserved             |                                                               |
| 0x02620200                                               | 0x02620203  | 4B   | NMIGRO               | See section 3.3.12                                            |
| 0x02620204                                               | 0x02620207  | 4B   | NMIGR1               |                                                               |
| 0x02620208                                               | 0x0262020B  | 4B   | Reserved             |                                                               |
| 0x0262020C                                               | 0x0262020F  | 4B   | Reserved             |                                                               |
| 0x02620210                                               | 0x02620213  | 4B   | Reserved             |                                                               |
| 0x02620214                                               | 0x02620217  | 4B   | Reserved             |                                                               |
| 0x02620218                                               | 0x0262021B  | 4B   | Reserved             |                                                               |
| 0x0262021C                                               | 0x0262021F  | 4B   | Reserved             |                                                               |
| 0x02620220                                               | 0x0262023F  | 32B  | Reserved             |                                                               |
| 0x02620240                                               | 0x02620243  | 4B   | IPCGR0               | See section 3.3.13                                            |
| 0x02620244                                               | 0x02620247  | 4B   | IPCGR1               |                                                               |
| 0x02620248                                               | 0x02620247  | 4B   | Reserved             |                                                               |
| 0x0262024C                                               | 0x0262024F  | 4B   | Reserved             |                                                               |
| 0x0262024C                                               | 0x02620253  | 4B   | Reserved             |                                                               |
|                                                          |             | _    |                      |                                                               |
| 0x02620254                                               | 0x02620257  | 4B   | Reserved             |                                                               |

### Table 3-2Device State Control Registers (Part 2 of 4)

# TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**

SPRS708E—March 2014



#### Table 3-2 **Device State Control Registers (Part 3 of 4)**

| Table 3-2 Device State Control Registers (Part 3 of 4) |             |      |             |                                                           |
|--------------------------------------------------------|-------------|------|-------------|-----------------------------------------------------------|
| Address Start                                          | Address End | Size | Field       | Description                                               |
| 0x02620258                                             | 0x0262025B  | 4B   | Reserved    |                                                           |
| 0x0262025C                                             | 0x0262025F  | 4B   | Reserved    |                                                           |
| 0x02620260                                             | 0x0262027B  | 28B  | Reserved    |                                                           |
| 0x0262027C                                             | 0x0262027F  | 4B   | IPCGRH      | See section 3.3.15                                        |
| 0x02620280                                             | 0x02620283  | 4B   | IPCAR0      | See section 3.3.14                                        |
| 0x02620284                                             | 0x02620287  | 4B   | IPCAR1      |                                                           |
| 0x02620288                                             | 0x0262028B  | 4B   | Reserved    |                                                           |
| 0x0262028C                                             | 0x0262028F  | 4B   | Reserved    |                                                           |
| 0x02620290                                             | 0x02620293  | 4B   | Reserved    |                                                           |
| 0x02620294                                             | 0x02620297  | 4B   | Reserved    |                                                           |
| 0x02620298                                             | 0x0262029B  | 4B   | Reserved    |                                                           |
| 0x0262029C                                             | 0x0262029F  | 4B   | Reserved    |                                                           |
| 0x026202A0                                             | 0x026202BB  | 28B  | Reserved    |                                                           |
| 0x026202BC                                             | 0x026202BF  | 4B   | IPCARH      | See section 3.3.16                                        |
| 0x026202C0                                             | 0x026202FF  | 64B  | Reserved    |                                                           |
| 0x02620300                                             | 0x02620303  | 4B   | TINPSEL     | See section 3.3.17                                        |
| 0x02620304                                             | 0x02620307  | 4B   | TOUTPSEL    | See section 3.3.18                                        |
| 0x02620308                                             | 0x0262030B  | 4B   | RSTMUX0     | See section 3.3.19                                        |
| 0x0262030C                                             | 0x0262030F  | 4B   | RSTMUX1     |                                                           |
| 0x02620310                                             | 0x02620313  | 4B   | Reserved    |                                                           |
| 0x02620314                                             | 0x02620317  | 4B   | Reserved    |                                                           |
| 0x02620318                                             | 0x0262031B  | 4B   | Reserved    |                                                           |
| 0x0262031C                                             | 0x0262031F  | 4B   | Reserved    |                                                           |
| 0x02620320                                             | 0x02620323  | 4B   | Reserved    |                                                           |
| 0x02620324                                             | 0x02620327  | 4B   | Reserved    |                                                           |
| 0x02620328                                             | 0x0262032B  | 4B   | MAINPLLCTL0 | See section 7.6 "Main PLL and PLL Controller" on page 137 |
| 0x0262032C                                             | 0x0262032F  | 4B   | MAINPLLCTL1 |                                                           |
| 0x02620330                                             | 0x02620333  | 4B   | DDR3PLLCTL0 | See section 7.7 "DD3 PLL" on page 150                     |
| 0x02620334                                             | 0x02620337  | 4B   | DDR3PLLCTL1 |                                                           |
| 0x02620338                                             | 0x0262033B  | 4B   | PASSPLLCTL0 | See section 7.8 "PASS PLL" on page 153                    |
| 0x0262033C                                             | 0x0262033F  | 4B   | PASSPLLCTL1 |                                                           |



| Table 3-2     Device State Control Registers (Part 4 of 4) |             |      |                         |                                                               |  |  |
|------------------------------------------------------------|-------------|------|-------------------------|---------------------------------------------------------------|--|--|
| Address Start                                              | Address End | Size | Field                   | Description                                                   |  |  |
| 0x02620340                                                 | 0x02620343  | 4B   | SGMII_SERDES_CFGPLL     | See "Related Documentation from Texas Instruments" on page 72 |  |  |
| 0x02620344                                                 | 0x02620347  | 4B   | SGMII_SERDES_CFGRX0     |                                                               |  |  |
| 0x02620348                                                 | 0x0262034B  | 4B   | SGMII_SERDES_CFGTX0     |                                                               |  |  |
| 0x0262034C                                                 | 0x0262034F  | 4B   | SGMII_SERDES_CFGRX1     |                                                               |  |  |
| 0x02620350                                                 | 0x02620353  | 4B   | SGMII_SERDES_CFGTX1     |                                                               |  |  |
| 0x02620354                                                 | 0x02620357  | 4B   | Reserved                |                                                               |  |  |
| 0x02620358                                                 | 0x0262035B  | 4B   | PCIE_SERDES_CFGPLL      |                                                               |  |  |
| 0x0262035C                                                 | 0x0262035F  | 4B   | Reserved                |                                                               |  |  |
| 0x02620360                                                 | 0x02620363  | 4B   | SRIO_SERDES_CFGPLL      |                                                               |  |  |
| 0x02620364                                                 | 0x02620367  | 4B   | SRIO_SERDES_CFGRX0      |                                                               |  |  |
| 0x02620368                                                 | 0x0262036B  | 4B   | SRIO_SERDES_CFGTX0      |                                                               |  |  |
| 0x0262036C                                                 | 0x0262036F  | 4B   | SRIO_SERDES_CFGRX1      |                                                               |  |  |
| 0x02620370                                                 | 0x02620373  | 4B   | SRIO_SERDES_CFGTX1      |                                                               |  |  |
| 0x02620374                                                 | 0x02620377  | 4B   | SRIO_SERDES_CFGRX2      |                                                               |  |  |
| 0x02620378                                                 | 0x0262037B  | 4B   | SRIO_SERDES_CFGTX2      |                                                               |  |  |
| 0x0262037C                                                 | 0x0262037F  | 4B   | SRIO_SERDES_CFGRX3      |                                                               |  |  |
| 0x02620380                                                 | 0x02620383  | 4B   | SRIO_SERDES_CFGTX3      |                                                               |  |  |
| 0x02620384                                                 | 0x0262038B  | 8B   | Reserved                |                                                               |  |  |
| 0x0262038C                                                 | 0x0262038F  | 4B   | DSP_SUSP_CTL            | See section 3.3.20                                            |  |  |
| 0x02620390                                                 | 0x026203B3  | 36B  | Reserved                |                                                               |  |  |
| 0x026203B4                                                 | 0x026203B7  | 4B   | HYPERLINK_SERDES_CFGPLL | See "Related Documentation from Texas Instruments" on page 72 |  |  |
| 0x026203B8                                                 | 0x026203BB  | 4B   | HYPERLINK_SERDES_CFGRX0 |                                                               |  |  |
| 0x026203BC                                                 | 0x026203BF  | 4B   | HYPERLINK_SERDES_CFGTX0 |                                                               |  |  |
| 0x026203C0                                                 | 0x026203C3  | 4B   | HYPERLINK_SERDES_CFGRX1 |                                                               |  |  |
| 0x026203C4                                                 | 0x026203C7  | 4B   | HYPERLINK_SERDES_CFGTX1 |                                                               |  |  |
| 0x026203C8                                                 | 0x026203CB  | 4B   | HYPERLINK_SERDES_CFGRX2 |                                                               |  |  |
| 0x026203CC                                                 | 0x026203CF  | 4B   | HYPERLINK_SERDES_CFGTX2 |                                                               |  |  |
| 0x026203D0                                                 | 0x026203D3  | 4B   | HYPERLINK_SERDES_CFGRX3 |                                                               |  |  |
| 0x026203D4                                                 | 0x026203D7  | 4B   | HYPERLINK_SERDES_CFGTX3 |                                                               |  |  |
| 0x026203D8                                                 | 0x026203DB  | 4B   | Reserved                |                                                               |  |  |
| 0x026203DC                                                 | 0x026203F7  | 28B  | Reserved                |                                                               |  |  |
| 0x026203F8                                                 | 0x026203FB  | 4B   | DEVSPEED                | See section 3.3.21                                            |  |  |
| 0x026203FC                                                 | 0x026203FF  | 4B   | Reserved                |                                                               |  |  |
| 0x02620400                                                 | 0x02620403  | 4B   | CHIP_MISC_CTL           | See section 3.3.22                                            |  |  |
| 0x02620404                                                 | 0x02620467  | 100B | Reserved                |                                                               |  |  |
| End of Table 3-2                                           | 2           |      |                         |                                                               |  |  |

### Table 3-2 Device State Control Registers (Part 4 of 4)

# TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**



SPRS708E—March 2014

### 3.3.1 Device Status Register

The Device Status Register depicts the device configuration selected upon a power-on reset by either the POR or RESETFULL pin. Once set, these bits will remain set until the next power-on reset. The Device Status Register is shown in Figure 3-1 and described in Table 3-3.

#### Figure 3-1 **Device Status Register**

| 31       | 18 | 17       | 16       | 15      | 14      | 13 |                  | 1 | 0                  |
|----------|----|----------|----------|---------|---------|----|------------------|---|--------------------|
| Reserved |    | PACLKSEL | PCIESSEN | PCIESSM | ODE[1:0 |    | BOOTMODE[12:0]   |   | LENDIAN            |
| R-0      |    |          | R-x      | R/W     | -xx     |    | R/W-xxxxxxxxxxxx |   | R-x <sup>(1)</sup> |

Legend: R = Read only; RW = Read/Write; -n = value after reset

1 x indicates the bootstrap value latched via the external pin

#### Table 3-3 **Device Status Register Field Descriptions**

| Bit    | Field           | Description                                                                                                                                                                                                                                                                                 |
|--------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-18  | Reserved        | Reserved. Read only, writes have no effect.                                                                                                                                                                                                                                                 |
| 17     | PACLKSEL        | PA Clock select to select the reference clock for PA Sub-System PLL<br>0 = Selects CORECLK(P/N)<br>1 = Selects PASSCLK(P/N)                                                                                                                                                                 |
| 16     | PCIESSEN        | PCIe module enable<br>0 = PCIe module disabled<br>1 = PCIe module enabled                                                                                                                                                                                                                   |
| 15-14  | PCIESSMODE[1:0] | PCle Mode selection pins<br>00b = PCle in end-point mode<br>01b = PCle in legacy end-point mode (support for legacy INTx)<br>10b = PCle in root complex mode<br>11b = Reserved                                                                                                              |
| 13-1   | BOOTMODE[12:0]  | Determines the bootmode configured for the device. For more information on bootmode, see Section 2.5 "Boot Modes Supported and PLL Settings" on page 24 and see the DSP <i>Bootloader for KeyStone Devices User Guide</i> in 2.10 "Related Documentation from Texas Instruments" on page 72 |
| 0      | LENDIAN         | Device endian mode (LENDIAN) — Shows the status of whether the system is operating in big endian mode or little endian mode.<br>0 = System is operating in big endian mode<br>1 = System is operating in little endian mode                                                                 |
| End of | Table 3-3       |                                                                                                                                                                                                                                                                                             |



### 3.3.2 Device Configuration Register (DEVCFG)

The Device Configuration Register is one-time writeable through software. The register is reset on all hard resets and is locked after the first write. The Device Configuration Register is shown in Figure 3-2 and described in Table 3-4.

#### Figure 3-2 Device Configuration Register (DEVCFG)

| 31 1     | 0           |
|----------|-------------|
| Reserved | SYSCLKOUTEN |
| R-0      | R/W-1       |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-4 Device Configuration Register (DEVCFG) Field Descriptions

| Bit              | Field       | Description                                                                   |  |  |  |
|------------------|-------------|-------------------------------------------------------------------------------|--|--|--|
| 31-1             | Reserved    | Reserved. Read only, writes have no effect.                                   |  |  |  |
| 0                | SYSCLKOUTEN | SYSCLKOUT Enable<br>0 = No clock output<br>1 = Clock output enabled (default) |  |  |  |
| End of Table 3-4 |             |                                                                               |  |  |  |

### 3.3.3 JTAG ID Register (JTAGID) Description

The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x0262 0018. The JTAG ID Register is shown in Figure 3-3 and described in Table 3-5.

#### Figure 3-3 JTAG ID Register (JTAGID)

| 31 28   | 27 12                  | 11          | 1    | 0   |
|---------|------------------------|-------------|------|-----|
| VARIANT | PART NUMBER            | MANUFACTU   | JRER | LSB |
| R-xxxb  | R-0000 0000 1001 1110b | 0000 0010 1 | 11b  | R-1 |

Legend: RW = Read/Write; R = Read only; -n = value after reset

#### Table 3-5 JTAG ID Register (JTAGID) Field Descriptions

| Bit    | Field            | Value                | Description                             |  |  |  |  |
|--------|------------------|----------------------|-----------------------------------------|--|--|--|--|
| 31-28  | VARIANT          | xxxxb                | Variant (4-bit) value.                  |  |  |  |  |
| 27-12  | PART NUMBER      | 0000 0000 1001 1110b | Part number for boundary scan           |  |  |  |  |
| 11-1   | MANUFACTURER     | 0000 0010 111b       | Manufacturer                            |  |  |  |  |
| 0      | LSB              | 1b                   | This bit is read as a 1 for TMS320C6672 |  |  |  |  |
| End of | End of Table 3-5 |                      |                                         |  |  |  |  |

**Note**—The value of the VARIANT and PART NUMBER fields depend on the silicon revision being used. See the Silicon Errata for details.



### 3.3.4 Kicker Mechanism Register (KICK0 and KICK1)

The Bootcfg module contains a kicker mechanism to prevent any spurious writes from changing any of the Bootcfg MMR values. When the kicker is locked (which it is initially after power on reset) none of the Bootcfg MMRs are writable (they are only readable). This mechanism requires two MMR writes to the KICK0 and KICK1 registers with exact data values before the kicker lock mechanism is un-locked. See Table 3-2 "Device State Control Registers" on page 74 for the address location. Once released then all the Bootcfg MMRs having "write" permissions are writable (the read-only MMRs are still read only). The first KICK0 data is 0x83e70b13. The second KICK1 data is 0x95a4f1e0. Writing any other data value to either of these kick MMRs will lock the kicker mechanism and block any writes to Bootcfg MMRs.

The kicker mechanism is unlocked by the ROM code. Do not write any other different values afterward to these registers because that will lock the kicker mechanism and block any writes to Bootcfg registers.

### 3.3.5 DSP Boot Address Register (DSP\_BOOT\_ADDRn)

The DSP\_BOOT\_ADDRn register stores the initial boot fetch address of CorePac\_n (n = core number). The fetch address is the public ROM base address (for any boot mode) by default. DSP\_BOOT\_ADDRn register access should be permitted to any master or emulator when the device is non-secure. CorePac will boot from that address when a reset is performed. The DSP\_BOOT\_ADDRn register is shown in Figure 3-4 and described in Table 3-6.

#### Figure 3-4 DSP BOOT Address Register (DSP\_BOOT\_ADDRn)

| 31 10                    | 9 0      |
|--------------------------|----------|
| DSP_BOOT_ADDR            | Reserved |
| RW-001000001011000000000 | R-0      |

Legend: R = Read only; RW = Read/Write; -*n* = value after reset

#### Table 3-6 DSP BOOT Address Register (DSP\_BOOT\_ADDRn) Field Descriptions

| Bit    | Field            | Description                                                                            |  |  |  |  |
|--------|------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| 31-10  | DSP_BOOT_ADDR    | pot address of CorePac. CorePac will boot from that address when a reset is performed. |  |  |  |  |
|        |                  | The reset value is 22 MSBs of ROM base address = 0x20B00000.                           |  |  |  |  |
| 9-0    | Reserved         | Reserved                                                                               |  |  |  |  |
| End of | End of Table 3-6 |                                                                                        |  |  |  |  |

### 3.3.6 LRESETNMI PIN Status Register (LRSTNMIPINSTAT)

The LRSTNMIPINSTAT Register is created in Boot Configuration to latch the status of  $\overline{\text{LRESET}}$  and  $\overline{\text{NMI}}$  based on CORESEL. The LRESETNMI PIN Status Register is shown in Figure 3-5 and described in Table 3-7.

#### Figure 3-5 LRESETNMI PIN Status Register (LRSTNMIPINSTAT)

| 31                              | 10 | 9    | 8    | 7           | 2 | 1   | 0   |
|---------------------------------|----|------|------|-------------|---|-----|-----|
| Reserved                        |    | NMI1 | NMI0 | Reserved    |   | LR1 | LR0 |
| R, +0000 0000 0000 0000 0000 00 |    | R-0  | R-0  | R, +0000 00 |   | R-0 | R-0 |

Legend: R = Read only; -n = value after reset;

| Bit    | Field            | Description             |  |  |  |
|--------|------------------|-------------------------|--|--|--|
| 31-10  | Reserved         | Reserved                |  |  |  |
| 9      | NMI1             | CorePac1 in NMI         |  |  |  |
| 8      | NMI0             | CorePac0 in NMI         |  |  |  |
| 7-2    | Reserved         | Reserved                |  |  |  |
| 1      | LR1              | CorePac1 in Local Reset |  |  |  |
| 0      | LRO              | CorePac0 in Local Reset |  |  |  |
| End of | End of Table 3-7 |                         |  |  |  |

#### Table 3-7 LRESETNMI PIN Status Register (LRSTNMIPINSTAT) Field Descriptions

## 3.3.7 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT\_CLR)

The LRSTNMIPINSTAT\_CLR Register is used to clear the status of  $\overline{\text{LRESET}}$  and  $\overline{\text{NMI}}$  based on CORESEL. The LRESETNMI PIN Status Clear Register is shown in Figure 3-6 and described in Table 3-8.

#### Figure 3-6 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT\_CLR)

| 31                     | 10         | 9     | 8     | 7 |             | 2 | 1     | 0     |
|------------------------|------------|-------|-------|---|-------------|---|-------|-------|
| Reserved               |            | NMI1  | NMI0  |   | Reserved    |   | LR1   | LR0   |
| R, +0000 0000 0000 000 | 00 0000 00 | WC,+0 | WC,+0 |   | R, +0000 00 |   | WC,+0 | WC,+0 |

Legend: R = Read only; -n = value after reset; WC = Write 1 to Clear

#### Table 3-8 LRESETNMI PIN Status Clear Register (LRSTNMIPINSTAT\_CLR) Field Descriptions

| Bit    | Field            | Description                   |  |  |  |  |
|--------|------------------|-------------------------------|--|--|--|--|
| 31-10  | Reserved         | Reserved                      |  |  |  |  |
| 9      | NMI1             | CorePac1 in NMI clear         |  |  |  |  |
| 8      | NMIO             | CorePac0 in NMI clear         |  |  |  |  |
| 7-2    | Reserved         | Reserved                      |  |  |  |  |
| 1      | LR1              | CorePac1 in local reset clear |  |  |  |  |
| 0      | LRO              | CorePac0 in local reset clear |  |  |  |  |
| End of | End of Table 3-8 |                               |  |  |  |  |



SPRS708E—March 2014

### 3.3.8 Reset Status Register (RESET\_STAT)

The reset status register (RESET\_STAT) captures the status of local reset (LRx) for each of the cores and also the global device reset (GR). Software can use this information to take different device initialization steps, if desired.

- In case of local reset: The LRx bits are written as 1 and GR bit is written as 0 only when the CorePac receives • a local reset without receiving a global reset.
- In case of global reset: The LRx bits are written as 0 and GR bit is written as 1 only when a global reset is • asserted.

The Reset Status Register is shown in Figure 3-7 and described in Table 3-9.

#### Figure 3-7 **Reset Status Register (RESET\_STAT)**

| 31    | 30                                | 2 | 1    | 0    |
|-------|-----------------------------------|---|------|------|
| GR    | Reserved                          |   | LR1  | LR0  |
| R, +1 | R, + 000 0000 0000 0000 0000 0000 |   | R,+0 | R,+0 |

Legend: R = Read only; -n = value after reset

#### Table 3-9 **Reset Status Register (RESET\_STAT) Field Descriptions**

| Bit    | Field            | Description                                                                                                   |  |  |  |  |
|--------|------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31     | GR               | Global reset status<br>0 = Device has not received a global reset.<br>1 = Device received a global reset.     |  |  |  |  |
| 30-2   | Reserved         | Reserved.                                                                                                     |  |  |  |  |
| 1      | LR1              | CorePac1 reset status<br>0 = CorePac1 has not received a local reset.<br>1 = CorePac1 received a local reset. |  |  |  |  |
| 0      | LRO              | CorePac0 reset status<br>0 = CorePac0 has not received a local reset.<br>1 = CorePac0 received a local reset. |  |  |  |  |
| End of | End of Table 3-9 |                                                                                                               |  |  |  |  |

## 3.3.9 Reset Status Clear Register (RESET\_STAT\_CLR)

The RESET\_STAT bits can be cleared by writing 1 to the corresponding bit in the RESET\_STAT\_CLR register. The Reset Status Clear Register is shown in Figure 3-8 and described in Table 3-10.

#### Reset Status Clear Register (RESET\_STAT\_CLR) Figure 3-8

| 31     | 30 2                              | 1     | 0     |
|--------|-----------------------------------|-------|-------|
| GR     | Reserved                          | LR1   | LR0   |
| RW, +0 | R, + 000 0000 0000 0000 0000 0000 | RW,+0 | RW,+0 |

Legend: R = Read only; RW = Read/Write; -n = value after reset



| Bit    | Field      | Description                                                                                                                                           |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31     | GR         | Global reset clear bit<br>0 = Writing a 0 has no effect.<br>1 = Writing a 1 to the GR bit clears the corresponding bit in the RESET_STAT register.    |
| 30-2   | Reserved   | Reserved.                                                                                                                                             |
| 1      | LR1        | CorePac1 reset clear bit<br>0 = Writing a 0 has no effect.<br>1 = Writing a 1 to the LR1 bit clears the corresponding bit in the RESET_STAT register. |
| 0      | LRO        | CorePac0 reset clear bit<br>0 = Writing a 0 has no effect.<br>1 = Writing a 1 to the LR0 bit clears the corresponding bit in the RESET_STAT register. |
| End of | Table 3-10 |                                                                                                                                                       |

### Table 3-10 Reset Status Clear Register (RESET\_STAT\_CLR) Field Descriptions

### 3.3.10 Boot Complete Register (BOOTCOMPLETE)

The BOOTCOMPLETE register controls the BOOTCOMPLETE pin status. The purpose is to indicate the completion of the ROM booting process. The Boot Complete Register is shown in Figure 3-9 and described in Table 3-11.

#### Figure 3-9 Boot Complete Register (BOOTCOMPLETE)

| 31                                 | 2 | 1     | 0     |
|------------------------------------|---|-------|-------|
| Reserved                           |   | BC1   | BC0   |
| R, + 0000 0000 0000 0000 0000 0000 |   | RW,+0 | RW,+0 |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-11 Boot Complete Register (BOOTCOMPLETE) Field Descriptions

| Bit    | Field      | Description                                                                          |
|--------|------------|--------------------------------------------------------------------------------------|
| 31-2   | Reserved   | Reserved.                                                                            |
| 1      | BC1        | CorePac1 boot status<br>0 = CorePac1 boot NOT complete<br>1 = CorePac1 boot complete |
| 0      | BC0        | CorePac0 boot status<br>0 = CorePac0 boot NOT complete<br>1 = CorePac0 boot complete |
| End of | Table 3-11 | ·                                                                                    |

The BCx bit indicates the boot complete status of the corresponding core. All BCx bits will be sticky bits — that is they can be set only once by the software after device reset and they will be cleared to 0 on all device resets.

Boot ROM code will be implemented such that each core will set its corresponding BCx bit immediately before branching to the predefined location in memory.



3.3.11 Power State Control Register (PWRSTATECTL)

The PWRSTATECTL register is controlled by the software to indicate the power-saving mode. ROM code reads this register to differentiate between the various power saving modes. This register is cleared only by POR and will survive all other device resets. See the *Hardware Design Guide for KeyStone I Devices* in "Related Documentation from Texas Instruments" on page 72 for more information. The Power State Control Register is shown in Figure 3-10 and described in Table 3-12.

#### Figure 3-10 Power State Control Register (PWRSTATECTL)

| 31 3                                    | 2                | 1           | 0       |
|-----------------------------------------|------------------|-------------|---------|
| GENERAL_PURPOSE                         | HIBERNATION_MODE | HIBERNATION | STANDBY |
| RW-0000 0000 0000 0000 0000 0000 0000 0 | RW-0             | RW-0        | RW-0    |

Legend: RW = Read/Write; -*n* = value after reset

| Table 3-12 Power State Control Register (PWRSTATECTL | ) Field Descriptions |
|------------------------------------------------------|----------------------|
|------------------------------------------------------|----------------------|

| Bit    | Field            | Description                                                                                                                                                                                      |
|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-3   | GENERAL_PURPOSE  | Used to provide a start address for execution out of the hibernation modes. See the DSP Bootloader for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72. |
| 2      | HIBERNATION_MODE | Indicates whether the device is in hibernation mode 1 or mode 2.<br>0 = Hibernation mode 1<br>1 = Hibernation mode 2                                                                             |
| 1      | HIBERNATION      | Indicates whether the device is in hibernation mode or not.<br>0 = Not in hibernation mode<br>1 = Hibernation mode                                                                               |
| 0      | STANDBY          | Indicates whether the device is in standby mode or not.<br>0 = Not in standby mode<br>1 = Standby mode                                                                                           |
| End of | Table 3-12       |                                                                                                                                                                                                  |

## 3.3.12 NMI Event Generation to CorePac Register (NMIGRx)

NMIGRx registers are used for generating NMI events to the corresponding CorePac. The C6672 has two NMIGRx registers (NMIGR0 through NMIGR1). The NMIGR0 register generates an NMI event to CorePac0, the NMIGR1 register generates an NMI event to CorePac1, and so on. Writing a 1 to the NMIG field generates a NMI pulse. Writing a 0 has no effect and reads return 0 and have no other effect. The NMI Even Generation to CorePac Register is shown in Figure 3-11 and described in Table 3-13.

| Figure 3-11 | NMI Generation Register (NMIGRx) |
|-------------|----------------------------------|
|-------------|----------------------------------|

| 31 1                                    | 0    |
|-----------------------------------------|------|
| Reserved                                | NMIG |
| R-0000 0000 0000 0000 0000 0000 0000 00 | RW-0 |

Legend: RW = Read/Write; -n = value after reset



| Bit   | Field        | Description                                                                    |
|-------|--------------|--------------------------------------------------------------------------------|
| 31-1  | Reserved     | Reserved                                                                       |
| 0     | NMIG         | NMI pulse generation.                                                          |
|       |              | Reads return 0                                                                 |
|       |              | Writes:<br>0 = No effect                                                       |
|       |              | 1 = Creates NMI pulse to the corresponding CorePac — CorePac0 for NMIGR0, etc. |
| End o | f Table 3-13 |                                                                                |

Table 3-13 NMI Generation Register (NMIGRx) Field Descriptions

## 3.3.13 IPC Generation Registers (IPCGRx)

IPCGRx are the IPC interrupt generation registers to facilitate inter CorePac interrupts.

The C6672 has two IPCGRx registers (IPCGR0 through IPCGR1). These registers can be used by external hosts or CorePacs to generate interrupts to other CorePacs. A write of 1 to IPCG field of IPCGRx register will generate an interrupt pulse to CorePacx ( $0 \le x \le 1$ ).

These registers also provide a *Source ID* facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Generation Register is shown in Figure 3-12 and described in Table 3-14.

| Figure 3-12 | IPC Generation (IPCGRx) Registers |
|-------------|-----------------------------------|
| Figure 3-12 | IPC Generation (IPCGRx) Register  |

| 31     | 30     | 29     | 28     | 27 |                      | 8 | 7     | 6     | 5     | 4     | 3    | 1    | 0    |
|--------|--------|--------|--------|----|----------------------|---|-------|-------|-------|-------|------|------|------|
| SRCS27 | SRCS26 | SRCS25 | SRCS24 |    | SRCS23 – SRCS4       |   | SRCS3 | SRCS2 | SRCS1 | SRCS0 | Rese | rved | IPCG |
| RW-0   | RW-0   | RW-0   | RW-0   |    | RW-0 (per bit field) |   | RW-0  | RW-0  | RW-0  | RW-0  | R-0  | 00   | RW-0 |

Legend: R = Read only; RW = Read/Write; -n = value after reset

Table 3-14 IPC Generation Registers (IPCGRx) Field Descriptions

| Bit    | Field      | Description                                                                  |
|--------|------------|------------------------------------------------------------------------------|
| 31-4   | SRCSx      | Interrupt source indication.                                                 |
|        |            | Reads return current value of internal register bit.                         |
|        |            | Writes:<br>0 = No effect<br>1 = Sets both SRCSx and the corresponding SRCCx. |
| 3-1    | Reserved   | Reserved                                                                     |
| 0      | IPCG       | Inter-DSP interrupt generation.                                              |
|        |            | Reads return 0.                                                              |
|        |            | Writes:                                                                      |
|        |            | 0 = No effect                                                                |
|        |            | 1 = Creates an Inter-DSP interrupt.                                          |
| End of | Table 3-14 |                                                                              |



## 3.3.14 IPC Acknowledgement Registers (IPCARx)

IPCARx are the IPC interrupt-acknowledgement registers to facilitate inter-CorePac core interrupts.

The C6672 has two IPCARx registers (IPCAR0 through IPCAR1). These registers also provide a *Source ID* facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are shown in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Acknowledgement Register is shown in Figure 3-13 and described in Table 3-15.

| Figure 3-13 IPC Acknowledgement (IPCARx) Registers |
|----------------------------------------------------|
|----------------------------------------------------|

| 31     | 30     | 29     | 28     | 27 |                      | 8 | 7     | 6     | 5     | 4     | 3        | 0 |
|--------|--------|--------|--------|----|----------------------|---|-------|-------|-------|-------|----------|---|
| SRCC27 | SRCC26 | SRCC25 | SRCC24 |    | SRCC23 – SRCC4       |   | SRCC3 | SRCC2 | SRCC1 | SRCC0 | Reserved |   |
| RW-0   | RW-0   | RW-0   | RW-0   |    | RW-0 (per bit field) |   | RW-0  | RW-0  | RW-0  | RW-0  | R-0000   |   |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-15 IPC Acknowledgement Registers (IPCARx) Field Descriptions

| Bit    | Field             | Description                                                                   |  |  |
|--------|-------------------|-------------------------------------------------------------------------------|--|--|
| 31-4   | SRCCx             | Interrupt source acknowledgement.                                             |  |  |
|        |                   | Reads return current value of internal register bit.                          |  |  |
|        |                   | Writes:<br>0 = No effect<br>1 = Clears both SRCCx and the corresponding SRCSx |  |  |
| 3-0    | Reserved Reserved |                                                                               |  |  |
| End of | Table 3-15        |                                                                               |  |  |

## 3.3.15 IPC Generation Host Register (IPCGRH)

The IPCGRH register facilitates interrupts to external hosts. Operation and use of the IPCGRH register is the same as for other IPCGR registers. The interrupt output pulse created by the IPCGRH register appears on device pin HOUT.

The host interrupt output pulse is stretched so that it is asserted for four bootcfg clock (CPU/6) cycles followed by a deassertion of four bootcfg clock cycles. Generating the pulse results in a pulse-blocking window that is eight CPU/6-cycles long. Back to back writes to the IPCRGH register with the IPCG bit (bit 0) set, generates only one pulse if the back-to-back writes to IPCGRH are less than the eight CPU/6 cycle window -- the pulse blocking window. In order to generate back-to-back pulses, the back-to-back writes to the IPCGRH register is shown in Figure 3-14 and described in Table 3-16.

|    | ••• |    |    | ,  | - |   |  |
|----|-----|----|----|----|---|---|--|
| 31 | 30  | 29 | 28 | 27 | 8 | 7 |  |

**IPC Generation (IPCGRH) Registers** 

| 31     | 30     | 29     | 28     | 27 |                      | 8 | 7     | 6     | 5     | 4     | 3     | 1   | 0    |  |
|--------|--------|--------|--------|----|----------------------|---|-------|-------|-------|-------|-------|-----|------|--|
| SRCS27 | SRCS26 | SRCS25 | SRCS24 |    | SRCS23 – SRCS4       |   | SRCS3 | SRCS2 | SRCS1 | SRCS0 | Reser | ved | IPCG |  |
| RW-0   | RW-0   | RW-0   | RW-0   | F  | RW-0 (per bit field) |   | RW-0  | RW-0  | RW-0  | RW-0  | R-00  | 00  | RW-0 |  |

Legend: R = Read only; RW = Read/Write; -n = value after reset

Figure 3-14



| Bit    | Field      | Description                                                                                                        |
|--------|------------|--------------------------------------------------------------------------------------------------------------------|
| 31-4   | SRCSx      | Interrupt source indication.                                                                                       |
|        |            | Reads return current value of internal register bit.                                                               |
|        |            | Writes:<br>0 = No effect<br>1 = Sets both SRCSx and the corresponding SRCCx.                                       |
| 3-1    | Reserved   | Reserved                                                                                                           |
| 0      | IPCG       | Host interrupt generation.                                                                                         |
|        |            | Reads return 0.                                                                                                    |
|        |            | Writes:<br>0 = No effect<br>1 = Creates an interrupt pulse on device pin (host interrupt/event output in HOUT pin) |
| End of | Table 3-16 |                                                                                                                    |

#### Table 3-16 IPC Generation Registers (IPCGRH) Field Descriptions

### 3.3.16 IPC Acknowledgement Host Register (IPCARH)

IPCARH registers are provided to facilitate host DSP interrupt. Operation and use of IPCARH is the same as other IPCAR registers. The IPC Acknowledgement Host Register is shown in Figure 3-15 and described in Table 3-17.

### Figure 3-15 IPC Acknowledgement Register (IPCARH)

| 31     | 30     | 29     | 28     | 27 |                      | 8 | 7     | 6     | 5     | 4     | 3        | 0 |
|--------|--------|--------|--------|----|----------------------|---|-------|-------|-------|-------|----------|---|
| SRCC27 | SRCC26 | SRCC25 | SRCC24 |    | SRCC23 – SRCC4       |   | SRCC3 | SRCC2 | SRCC1 | SRCC0 | Reserved |   |
| RW-0   | RW-0   | RW-0   | RW-0   |    | RW-0 (per bit field) |   | RW-0  | RW-0  | RW-0  | RW-0  | R-0000   |   |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-17 IPC Acknowledgement Register (IPCARH) Field Descriptions

| Bit    | Field      | Description                                                                   |
|--------|------------|-------------------------------------------------------------------------------|
| 31-4   | SRCCx      | Interrupt source acknowledgement.                                             |
|        |            | Reads return current value of internal register bit.                          |
|        |            | Writes:<br>0 = No effect<br>1 = Clears both SRCCx and the corresponding SRCSx |
| 3-0    | Reserved   | Reserved                                                                      |
| End of | Table 3-17 |                                                                               |



3.3.17 Timer Input Selection Register (TINPSEL)

Timer input selection is handled within the control register TINPSEL. The Timer Input Selection Register is shown in Figure 3-16 and described in Table 3-18. Timer 2~7 are reserved.

#### Figure 3-16 Timer Input Selection Register (TINPSEL)

| 31             | 30             | 29             | 28             | 27             | 26             | 25             | 24             | 23             | 22             | 21             | 20             | 19            | 18            | 17            | 16            |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|
| TINPHS<br>EL15 | TINPLS<br>EL15 | TINPHS<br>EL14 | TINPLS<br>EL14 | TINPHS<br>EL13 | TINPLS<br>EL13 | TINPHS<br>EL12 | TINPLS<br>EL12 | TINPHS<br>EL11 | TINPLS<br>EL11 | TINPHS<br>EL10 | TINPLS<br>EL10 | TINPHS<br>EL9 | TINPLS<br>EL9 | TINPHS<br>EL8 | TINPLS<br>EL8 |
| RW, +1         | RW, +0         | RW, +1        | RW, +0        | RW, +1        | RW, +0        |
| 15             |                |                |                |                |                |                |                |                |                |                | 4              | 3             | 2             | 1             | 0             |
|                | Reserved       |                |                |                |                |                |                |                |                |                | TINPHS<br>EL1  | TINPLS<br>EL1 | TINPHS<br>EL0 | TINPLS<br>EL0 |               |
| R, +0          |                |                |                |                |                |                |                |                |                | RW, +1         | RW, +0         | RW, +1        | RW, +0        |               |               |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-18 Timer Input Selection Field Description (TINPSEL) (Part 1 of 2)

| Bit | Field      | Description                                              |
|-----|------------|----------------------------------------------------------|
| 31  | TINPHSEL15 | Input select for TIMER15 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 30  | TINPLSEL15 | Input select for TIMER15 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 29  | TINPHSEL14 | Input select for TIMER14 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 28  | TINPLSEL14 | Input select for TIMER14low.<br>0 = TIMI0<br>1 = TIMI1   |
| 27  | TINPHSEL13 | Input select for TIMER13 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 26  | TINPLSEL13 | Input select for TIMER13 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 25  | TINPHSEL12 | Input select for TIMER12 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 24  | TINPLSEL12 | Input select for TIMER12 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 23  | TINPHSEL11 | Input select for TIMER11 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 22  | TINPLSEL11 | Input select for TIMER11 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 21  | TINPHSEL10 | Input select for TIMER10 high.<br>0 = TIMI0<br>1 = TIMI1 |



| Bit   | Field        | Description                                             |
|-------|--------------|---------------------------------------------------------|
| 20    | TINPLSEL10   | Input select for TIMER10 low.<br>0 = TIMI0<br>1 = TIMI1 |
| 19    | TINPHSEL9    | Input select for TIMER9 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 18    | TINPLSEL9    | Input select for TIMER9 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 17    | TINPHSEL8    | Input select for TIMER8 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 16    | TINPLSEL8    | Input select for TIMER8 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 15-4  | Reserved     | Reserved                                                |
| 3     | TINPHSEL1    | Input select for TIMER1 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 2     | TINPLSEL1    | Input select for TIMER1 low.<br>0 = TIMI0<br>1 = TIMI1  |
| 1     | TINPHSELO    | Input select for TIMER0 high.<br>0 = TIMI0<br>1 = TIMI1 |
| 0     | TINPLSELO    | Input select for TIMER0 low.<br>0 = TIMI0<br>1 = TIMI1  |
| End o | f Table 3-18 |                                                         |

#### Table 3-18 Timer Input Selection Field Description (TINPSEL) (Part 2 of 2)



3.3.18 Timer Output Selection Register (TOUTPSEL)

The timer output selection is handled within the control register TOUTSEL. The Timer Output Selection Register is shown in Figure 3-17 and described in Table 3-19.

#### Figure 3-17 Timer Output Selection Register (TOUTPSEL)

| 31                                     | 10 | 9        | 5  | 4 | 0         |
|----------------------------------------|----|----------|----|---|-----------|
| Reserved                               |    | TOUTPSEL | .1 |   | TOUTPSEL0 |
| R-000000000000000000000000000000000000 |    | RW-0000  | 1  |   | RW-00000  |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-19 Timer Output Selection Register (TOUTPSEL) Field Description

| Bit    | Field      | Description                                                                                                                                                                                                                      |                                                                                                                                                                                  |
|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-10  | Reserved   | Reserved                                                                                                                                                                                                                         |                                                                                                                                                                                  |
| 9-5    | TOUTPSEL1  | Output select for TIMO1<br>00000: TOUTL0<br>00001: TOUTH0<br>00010: TOUTL1                                                                                                                                                       | 10110: TOUTL11<br>10111: TOUTH11<br>11000: TOUTL12                                                                                                                               |
|        |            | 00011: TOUTH1<br>01000 to 01111: Reserved<br>10000: TOUTL8<br>10001: TOUTH8<br>10010: TOUTL9<br>10011: TOUTH9<br>10100: TOUTL10<br>10101: TOUTH10                                                                                | 11001: TOUTH12<br>11010: TOUTL13<br>11011: TOUTH13<br>11100: TOUTL14<br>11101: TOUTH14<br>11110: TOUTL15<br>11111: TOUTH15                                                       |
| 4-0    | TOUTPSEL0  | Output select for TIMO0<br>00000: TOUTL0<br>00001: TOUTH0<br>00010: TOUTL1<br>00011: TOUTH1<br>00100 to 011111: Reserved<br>10000: TOUTL8<br>10001: TOUTH8<br>10010: TOUTL9<br>10011: TOUTH9<br>10100: TOUTL10<br>10101: TOUTH10 | 10110: TOUTL11<br>10111: TOUTH11<br>11000: TOUTL12<br>11001: TOUTH12<br>11010: TOUTL13<br>11011: TOUTH13<br>11100: TOUTL14<br>11101: TOUTL14<br>11110: TOUTL15<br>11111: TOUTH15 |
| End of | Table 3-19 |                                                                                                                                                                                                                                  |                                                                                                                                                                                  |

### 3.3.19 Reset Mux Register (RSTMUXx)

The software controls the Reset Mux block through the reset multiplex registers using RSTMUX0 through RSTMUX1 for each of the two CorePacs on the C6672. These registers are located in Bootcfg memory space. The Reset Mux Register is shown in Figure 3-18 and described in Table 3-20.

#### Figure 3-18 Reset Mux Register (RSTMUXx)

| 31                         | 10   | 9          | 8        | 7 5    | 4       | 3 1    | 0    |
|----------------------------|------|------------|----------|--------|---------|--------|------|
| Reserved                   |      | EVTSTATCLR | Reserved | DELAY  | EVTSTAT | OMODE  | LOCK |
| R-0000 0000 0000 0000 0000 | 0 00 | RC-0       | R-0      | RW-100 | R-0     | RW-000 | RW-0 |

Legend: R = Read only; RW = Read/Write; -n = value after reset; RC = Read only and write 1 to clear



| Bit    | Field      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-10  | Reserved   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9      | EVTSTATCLR | Clear event status<br>0 = Writing 0 has no effect<br>1 = Writing 1 to this bit clears the EVTSTAT bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8      | Reserved   | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7-5    | DELAY      | Delay cycles between NMI & local reset<br>000b = 256 CPU/6 cycles delay between NMI & local reset, when OMODE = 100b<br>001b = 512 CPU/6 cycles delay between NMI & local reset, when OMODE=100b<br>010b = 1024 CPU/6 cycles delay between NMI & local reset, when OMODE=100b<br>011b = 2048 CPU/6 cycles delay between NMI & local reset, when OMODE=100b<br>100b = 4096 CPU/6 cycles delay between NMI & local reset, when OMODE=100b (Default)<br>101b = 8192 CPU/6 cycles delay between NMI & local reset, when OMODE=100b<br>110b = 16384 CPU/6 cycles delay between NMI & local reset, when OMODE=100b<br>111b = 32768 CPU/6 cycles delay between NMI & local reset, when OMODE=100b |
| 4      | EVTSTAT    | Event status.<br>0 = No event received (Default)<br>1 = WD timer event received by Reset Mux block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3-1    | OMODE      | Timer event operation mode<br>000b = WD timer event input to the reset mux block does not cause any output event (default)<br>001b = Reserved<br>010b = WD timer event input to the reset mux block causes local reset input to CorePac<br>011b = WD timer event input to the reset mux block causes NMI input to CorePac<br>100b = WD timer event input to the reset mux block causes NMI input followed by local reset input to CorePac. Delay<br>between NMI and local reset is set in DELAY bit field.<br>101b = WD timer event input to the reset mux block causes device reset to C6672<br>110b = Reserved<br>111b = Reserved                                                        |
| 0      | LOCK       | Lock register fields<br>0 = Register fields are not locked (default)<br>1 = Register fields are locked until the next timer reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| End of | Table 3-20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Table 3-20 Reset Mux Register (RSTMUXx) Field Descriptions

### 3.3.20 DSP Suspension Control Register (DSP\_SUSP\_CTL)

The DSP Suspension Control Register controls the emulation suspension signals from DSP cores. The DSP Suspension Control Register is shown in Figure 3-19 and described in Table 3-21.

#### Figure 3-19 DSP Suspension Control Register (DSP\_SUSP\_CTL)

| 31           | 30       | 0 |
|--------------|----------|---|
| DSP_SUSP_CTL | Reserved |   |
| R/W-0        | R-0      |   |

Legend: R = Read only; RW = Read/Write; -n = value after reset



| Table 3-21 | DSP Suspension Control Register (DSP_SUSP_CTL) Field Descriptions |
|------------|-------------------------------------------------------------------|
| Table 3-21 | DSF Suspension Control Register (DSF_SOSF_CTL) Field Descriptions |

| Bit    | Field        | Description                                                                                                                                                             |
|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31     | DSP_SUSP_CTL | Control the combination of emulation suspension signals from DSP cores<br>0 = AND suspension signals from all DSP cores<br>1 = OR suspension signals from all DSP cores |
| 30-0   | Reserved     | Reserved. Read only                                                                                                                                                     |
| End of | Table 3-21   | •                                                                                                                                                                       |



### 3.3.21 Device Speed Register (DEVSPEED)

The Device Speed Register depicts the device speed grade. The Device Speed Register is shown below.

#### Figure 3-20 Device Speed Register (DEVSPEED)

| 31 23    | 22 0     |
|----------|----------|
| DEVSPEED | Reserved |
| R-n      | R-n      |

Legend: R = Read only; RW = Read/Write; -n = value after reset

#### Table 3-22 Device Speed Register (DEVSPEED) Field Descriptions

| Bit    | Field      | Description                                   |
|--------|------------|-----------------------------------------------|
| 31-23  | DEVSPEED   | Indicates the speed of the device (read only) |
|        |            | 0000 0000 0b = 800 MHz                        |
|        |            | 0000 0000 1b = 1000 MHz                       |
|        |            | 0000 0001 xb = 1200 MHz                       |
|        |            | 0000 001x xb = 1250 MHz                       |
|        |            | 0000 01xx xb = Reserved                       |
|        |            | 0000 1xxx xb = 1500 MHz                       |
|        |            | 0001 xxxx xb = 1250 MHz                       |
|        |            | 001x xxxx xb = 1200 MHz                       |
|        |            | 01xx xxxx xb = 1000 MHz                       |
|        |            | 1xxx xxxx xb = 800 MHz                        |
| 22-0   | Reserved   | Reserved. Read only                           |
| End of | Table 3-22 |                                               |

### 3.3.22 Chip Miscellaneous Control Register (CHIP\_MISC\_CTL)

The Chip Miscellaneous Control Register is shown below.

#### Figure 3-21 Chip Miscellaneous Control Register (CHIP\_MISC\_CTL)

| 31 1                   | 3 | 12                    | 11      | 3      | 2     | 0       |
|------------------------|---|-----------------------|---------|--------|-------|---------|
| Reserved               |   | MSMC_BLOCK_PARITY_RST | Rese    | rved   | QM_PF | RIORITY |
| R/W-000000000000000000 |   | RW-0                  | R/W-001 | 000011 | RW    | -000    |

Legend: R = Read only; R/W = Read/Write; -n = value after reset

#### Table 3-23 Chip Miscellaneous Control Register (CHIP\_MISC\_CTL) Field Descriptions

| Bit    | Field                 | Description                                                                                                            |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------|
| 31-13  | Reserved              | Reserved.                                                                                                              |
| 12     | MSMC_BLOCK_PARITY_RST | Controls MSMC parity RAM reset. When set to 1, it means the MSMC parity RAM will not be reset.                         |
| 11-3   | Reserved              | Reserved.                                                                                                              |
| 2-0    | QM_PRIORITY           | Control the priority level for the transactions from QM Packet DMA master port, which access the external linking RAM. |
| End of | Table 3-23            |                                                                                                                        |



## 3.4 Pullup/Pulldown Resistors

Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors.

An external pullup/pulldown resistor must be used in the following situations:

- Device Configuration Pins: If the pin is both routed out and are not driven (in Hi-Z state), an external pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state.
- **Other Input Pins:** If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown • resistor to pull the signal to the opposite rail.

For the device configuration pins (listed in Table 3-1), if they are both routed out and are not driven (in Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device configuration pins. In addition, applying external pullup/pulldown resistors on the device configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.

Tips for choosing an external pullup/pulldown resistor:

- Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors.
- Decide a target value for the net. For a pulldown resistor, this should be below the lowest V<sub>IL</sub> level of all inputs • connected to the net. For a pullup resistor, this should be above the highest V<sub>IH</sub> level of all inputs on the net. A reasonable choice would be to target the  $V_{OL}$  or  $V_{OH}$  levels for the logic family of the limiting device; which, by definition, have margin to the  $V_{IL}$  and  $V_{IH}$  levels.
- Select a pullup/pulldown resistor with the largest possible value that can still ensure that the net will reach the • target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net.
- For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value of the • external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin).
- Remember to include tolerances when selecting the resistor value. .
- For pullup resistors, also remember to include tolerances on the  $DV_{DD}$  rail. •

For most systems:

- A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
- A 20-k $\Omega$  resistor can be used to compliment the IPU/IPD on the device configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.

For more detailed information on input current (I<sub>1</sub>), and the low-level/high-level input voltages (V<sub>II</sub> and V<sub>IH</sub>) for the TMS320C6672 device, see Section 6.3 "Electrical Characteristics" on page 115.

To determine which pins on the device include internal pullup/pulldown resistors, see Table 2-26 "Terminal Functions — Signals and Control by Function" on page 44.



## **4** System Interconnect

On the TMS320C6672 device, the C66x CorePacs, the EDMA3 transfer controllers, and the system peripherals are interconnected through the TeraNet, which is a non-blocking switch fabric enabling fast and contention-free internal data movement. The TeraNet allows for low-latency, concurrent data transfers between master peripherals and slave peripherals. The TeraNet also allows for seamless arbitration between the system masters when accessing system slaves.

## 4.1 Internal Buses and Switch Fabrics

Two types of buses exist in the device: data buses and configuration buses. Some peripherals have both a data bus and a configuration bus interface, while others have only one type of interface. Further, the bus interface width and speed varies from peripheral to peripheral. Configuration buses are mainly used to access the register space of a peripheral and the data buses are used mainly for data transfers.

The C66x CorePacs, the EDMA3 traffic controllers, and the various system peripherals can be classified into two categories: masters and slaves. Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for their data transfers. Slaves, on the other hand, rely on the masters to perform transfers to and from them. Examples of masters include the EDMA3 traffic controllers, SRIO, and Network Coprocessor packet DMA. Examples of slaves include the SPI, UART, and  $I^2C$ .

The masters and slaves in the device are communicating through the TeraNet (switch fabric). The device contains two switch fabrics. The data switch fabric (data TeraNet) and the configuration switch fabric (configuration TeraNet). The data TeraNet, is a high-throughput interconnect mainly used to move data across the system. The data TeraNet connects masters to slaves via data buses. Some peripherals require a bridge to connect to the data TeraNet. The configuration TeraNet, is mainly used to access peripheral registers. The configuration TeraNet connects masters to slaves via configuration buses. As with the data TeraNet, some peripherals require the use of a bridge to interface to the configuration TeraNet. Note that the data TeraNet also connects to the configuration TeraNet. For more details see 4.2 "Switch Fabric Connections".

### TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor** SPRS708E—March 2014



## 4.2 Switch Fabric Connections

The following figures show the connections between masters and slaves on TeraNet 2A and TeraNet 3A.

#### TeraNet 2A for C6672 Figure 4-1



\* *n* varies with the number of CorePacs present in the specific device.



#### Figure 4-2 TeraNet 3A for C6672



\* *n* varies with the number of CorePacs present in the specific device.



Allowed connections on TeraNet 2A and TeraNet 3A are summarized in the table below.

Intersecting cells may contain one of the following:

- Y There is a direct connection between this master and that slave.
- - There is NO connection between this master and that slave.
- n A numeric value indicates that the path between this master and that slave goes through bridge n.

Table 4-1 Data Switch Fabric Connection Matrix

|                  |                 |          |          |               |               | Slaves     |          |     |        |            |          |
|------------------|-----------------|----------|----------|---------------|---------------|------------|----------|-----|--------|------------|----------|
| Masters          | HyperLink_Slave | MSMC_SES | MSMC_SMS | CorePac0_SDMA | CorePac1_SDMA | SRIO_Slave | Boot_ROM | SPI | EMIF16 | PCle_Slave | QM_Slave |
| HyperLink_Master | -               | Y        | Y        | 1             | 1             | 1          | 1        | 1   | 1      | 1          | 1        |
| EDMA3CC0_TC0_RD  | Y               | Y        | Y        | 2             | 2             | 2          | 2        | 2   | 2      | 2          | -        |
| EDMA3CC0_TC0_WR  | Y               | Y        | Y        | 2             | 2             | 2          | -        | 2   | 2      | 2          | -        |
| EDMA3CC0_TC1_RD  | Y               | Y        | Y        | 3             | 3             | 3          | 3        | 3   | 3      | 3          | -        |
| EDMA3CC0_TC1_WR  | Y               | Y        | Y        | 3             | 3             | 3          | -        | 3   | 3      | 3          | -        |
| EDMA3CC1_TC0_RD  | 5               | 5        | 5        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC1_TC0_WR  | 5               | 5        | 5        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| EDMA3CC1_TC1_RD  | 6               | 6        | 6        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | Y        |
| EDMA3CC1_TC1_WR  | 6               | 6        | 6        | Y             | Y             | Y          | -        | Y   | Y      | Y          | Y        |
| EDMA3CC1_TC2_RD  | 7               | 7        | 7        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC1_TC2_WR  | 7               | 7        | 7        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| EDMA3CC1_TC3_RD  | 8               | 8        | 8        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC1_TC3_WR  | 8               | 8        | 8        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC0_RD  | 9               | 9        | 9        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC0_WR  | 9               | 9        | 9        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC1_RD  | 10              | 10       | 10       | Y             | Y             | Y          | Y        | Y   | Y      | Y          | Y        |
| EDMA3CC2_TC1_WR  | 10              | 10       | 10       | Y             | Y             | Y          | -        | Y   | Y      | Y          | Y        |
| EDMA3CC2_TC2_RD  | 5               | 5        | 5        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC2_WR  | 5               | 5        | 5        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC3_RD  | 6               | 6        | 6        | Y             | Y             | Y          | Y        | Y   | Y      | Y          | -        |
| EDMA3CC2_TC3_WR  | 6               | 6        | 6        | Y             | Y             | Y          | -        | Y   | Y      | Y          | -        |
| SRIO packet DMA  | -               | 9        | 9        | Y             | Y             | -          | -        | -   | Y      | -          | Y        |
| SRIO_Master      | 9               | 9        | 9        | Y             | Y             | -          | -        | Y   | Y      | -          | Y        |
| PCIe_Master      | 7               | 7        | 7        | Y             | Y             | -          | -        | Y   | Y      | -          | Y        |
| NETCP packet DMA | -               | 10       | 10       | Y             | Y             | -          | -        | -   | -      | -          | Y        |
| MSMC_Data_Master | Y               | -        | -        | 4             | 4             | 4          | 4        | 4   | 4      | 4          | 4        |
| QM packet DMA    | 8               | 8        | 8        | Y             | Y             | -          | -        | -   | -      | -          | Y        |
| QM_Second        | 8               | 8        | 8        | Y             | Y             | -          | -        | -   | -      | -          | -        |
| DebugSS_Master   | 10              | 10       | 10       | Y             | Y             | Y          | Y        | Y   | Y      | Y          | Y        |
| TSIP0_Master     | -               | 5        | 5        | Y             | Y             | -          | -        | -   | -      | -          | -        |
| TSIP1_Master     | -               | 5        | 5        | Y             | Y             | -          | -        | -   | -      | -          | -        |
| End of Table 4-1 |                 |          |          |               |               |            |          |     |        |            |          |



The following figure shows the connection between masters and slaves on TeraNet 3P and TeraNet 6P.

### Figure 4-3 TeraNet 3P\_A & B for C6672



\* *n* varies with the number of CorePacs present in the specific device.

\* *n* varies with the number of CorePacs present in the specific device.

# TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014



Figure 4-4 TeraNet 6P\_B and 3P\_Tracer for C6672



Allowed connections on TeraNet 3P and TeraNet 6P are summarized in the tables below.

Intersecting cells may contain one of the following:

- Y There is a direct connection between this master and that slave.
- - There is NO connection between this master and that slave.
- n A numeric value indicates that the path between this master and that slave goes through bridge n.

 Table 4-2
 Configuration Switch Fabric Connection Matrix Section1 (Part 1 of 2)

|                  |          |          |          |                  |                  |                  |          | Slav      | e        |         |          |          |      |      |      |       |
|------------------|----------|----------|----------|------------------|------------------|------------------|----------|-----------|----------|---------|----------|----------|------|------|------|-------|
| Masters          | EDMA3CC0 | EDMA3CC1 | EDMA3CC2 | EDMA3CC0_TC(0-1) | EDMA3CC1_TC(0-3) | EDMA3CC2_TC(0-3) | SRIO_CFG | NETCP_CFG | TSIP_CFG | QMSSCFG | UART_CFG | Boot_CFG | PSC  | PLL  | CIC  | Timer |
| HyperLink_Master | 1,12     | 1,12     | 1,12     | 1,12             | 1,12             | 1,12             | 1,12     | 1,12      | 1,12     | 1,12    | 1,12     | 1,12     | 1,12 | 1,12 | 1,12 | 1,12  |
| EDMA3CC0_TC0_RD  | 2,12     | 2,12     | 2,12     | 2,12             | 2,12             | 2,12             | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC0_TC0_WR  | 2,12     | 2,12     | 2,12     | 2,12             | 2,12             | 2,12             | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC0_TC1_RD  | 3,12     | 3,12     | 3,12     | 3,12             | 3,12             | 3,12             | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC0_TC1_WR  | 3,12     | 3,12     | 3,12     | 3,12             | 3,12             | 3,12             | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC1_TC0_RD  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC1_TC0_WR  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC1_TC1_RD  | 13       | 13       | 13       | 13               | 13               | 13               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC1_TC1_WR  | 13       | 13       | 13       | 13               | 13               | 13               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC1_TC2_RD  | 14       | 14       | 14       | 14               | 14               | 14               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC1_TC2_WR  | 14       | 14       | 14       | 14               | 14               | 14               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC1_TC3_RD  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC1_TC3_WR  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC2_TC0_RD  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC2_TC0_WR  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC2_TC1_RD  | 13       | 13       | 13       | 13               | 13               | 13               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC2_TC1_WR  | 13       | 13       | 13       | 13               | 13               | 13               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC2_TC2_RD  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC2_TC2_WR  | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| EDMA3CC2_TC3_RD  | 14       | 14       | 14       | 14               | 14               | 14               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC2_TC3_WR  | 14       | 14       | 14       | 14               | 14               | 14               | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| SRIO packet DMA  | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| SRIO_Master      | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| PCIe_Master      | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| NETCP packet DMA | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| MSMC_Data_Master | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| QM packet DMA    | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| QM_Second        | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| DebugSS_Master   | 12       | 12       | 12       | 12               | 12               | 12               | 12       | 12        | 12       | 12      | 12       | 12       | 12   | 12   | 12   | 12    |
| TSIP0_Master     | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| TSIP1_Master     | -        | -        | -        | -                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |
| EDMA3CC0         | -        | -        | -        | Y                | -                | -                | -        | -         | -        | -       | -        | -        | -    | -    | -    | -     |

# TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**



SPRS708E—March 2014

#### Table 4-2 Configuration Switch Fabric Connection Matrix Section1 (Part 2 of 2)

|                  |          | Slave    |          |                  |                  |                  |          |           |          |         |          |          |     |     |     |       |
|------------------|----------|----------|----------|------------------|------------------|------------------|----------|-----------|----------|---------|----------|----------|-----|-----|-----|-------|
| Masters          | EDMA3CC0 | EDMA3CC1 | EDMA3CC2 | EDMA3CC0_TC(0-1) | EDMA3CC1_TC(0-3) | EDMA3CC2_TC(0-3) | SRIO_CFG | NETCP_CFG | TSIP_CFG | QMSSCFG | UART_CFG | Boot_CFG | PSC | TTd | כוכ | Timer |
| EDMA3CC1         | -        | -        | -        | -                | Y                | -                | -        | -         | -        | -       | -        | -        | -   | -   | -   | -     |
| EDMA3CC2         | -        | -        | -        | -                | -                | Y                | -        | -         | -        | -       | -        | -        | -   | -   | -   | -     |
| CorePac0_CFG     | Υ        | Υ        | Υ        | Y                | Υ                | Υ                | Υ        | Y         | Y        | Y       | Y        | Y        | Y   | Y   | Y   | Y     |
| CorePac1_CFG     | Y        | Y        | Y        | Y                | Y                | Y                | Y        | Y         | Y        | Y       | Y        | Y        | Y   | Y   | Y   | Y     |
| End of Table 4-2 |          |          |          |                  |                  |                  |          |           |          |         |          |          |     |     |     |       |

#### Table 4-3 Configuration Switch Fabric Connection Matrix Section2 (Part 1 of 2)

|                  |      |      |           |             | Sla  | ve     |              |             |       |       |
|------------------|------|------|-----------|-------------|------|--------|--------------|-------------|-------|-------|
| Masters          | GPIO | l²c  | Semaphore | SmartReflex | MPU  | Tracer | Debug_SS_CFG | TETB_System | TETBO | TETB1 |
| HyperLink_Master | 1,12 | 1,12 | 1,12      | 1,12        | 1,12 | 1,12   | 1,12         | -           | -     | -     |
| EDMA3CC0_TC0_RD  | -    | -    | -         | -           | -    | -      | -            | 2,12        | -     | -     |
| EDMA3CC0_TC0_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC0_TC1_RD  | -    | -    | -         | -           | -    | -      | -            | 3,12        | -     | -     |
| EDMA3CC0_TC1_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC1_TC0_RD  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | -     | -     |
| EDMA3CC1_TC0_WR  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | -           | -     | -     |
| EDMA3CC1_TC1_RD  | -    | -    | -         | -           | -    | -      | -            | -           | 13    | 13    |
| EDMA3CC1_TC1_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC1_TC2_RD  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC1_TC2_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC1_TC3_RD  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | -     | -     |
| EDMA3CC1_TC3_WR  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | -           | -     | -     |
| EDMA3CC2_TC0_RD  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | -     | -     |
| EDMA3CC2_TC0_WR  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | -           | -     | -     |
| EDMA3CC2_TC1_RD  | -    | -    | -         | -           | -    | -      | -            | -           | 13    | 13    |
| EDMA3CC2_TC1_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC2_TC2_RD  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | -     | -     |
| EDMA3CC2_TC2_WR  | 12   | 12   | 12        | 12          | 12   | 12     | 12           | -           | -     | -     |
| EDMA3CC2_TC3_RD  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| EDMA3CC2_TC3_WR  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| SRIO packet DMA  | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |
| SRIO_Master      | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | 12    | 12    |
| PCle_Master      | 12   | 12   | 12        | 12          | 12   | 12     | 12           | 12          | 12    | 12    |
| NETCP packet DMA | -    | -    | -         | -           | -    | -      | -            | -           | -     | -     |



|                  |      | Slave |           |             |     |        |              |             |       |       |  |  |  |  |  |
|------------------|------|-------|-----------|-------------|-----|--------|--------------|-------------|-------|-------|--|--|--|--|--|
| Masters          | GPIO | l²c   | Semaphore | SmartReflex | MPU | Tracer | Debug_SS_CFG | TETB_System | TETBO | TET81 |  |  |  |  |  |
| MSMC_Data_Master | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| QM packet DMA    | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| QM_Second        | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| DebugSS_Master   | 12   | 12    | 12        | 12          | 12  | 12     | 12           | 12          | 12    | 12    |  |  |  |  |  |
| TSIP0_Master     | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| TSIP1_Master     | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| EDMA3CC0         | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| EDMA3CC1         | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| EDMA3CC2         | -    | -     | -         | -           | -   | -      | -            | -           | -     | -     |  |  |  |  |  |
| CorePac0_CFG     | Y    | Y     | Y         | Y           | Y   | Y      | Y            | Y           | Y     | Y     |  |  |  |  |  |
| CorePac1_CFG     | Y    | Y     | Y         | Y           | Y   | Y      | Y            | Y           | Y     | Y     |  |  |  |  |  |
| End of Table 4-3 |      |       |           |             |     |        |              |             |       |       |  |  |  |  |  |

#### Table 4-3 Configuration Switch Fabric Connection Matrix Section2 (Part 2 of 2)



## 4.3 **Bus Priorities**

The priority level of all master peripheral traffic is defined at the TeraNet boundary. User programmable priority registers allow software configuration of the data traffic through the TeraNet. Note that a lower number means higher priority - PRI = 000b = urgent, PRI = 111b = low.

All other masters provide their priority directly and do not need a default priority setting. Examples include the CorePacs, whose priorities are set through software in the UMC control registers. All the packet-DMA-based peripherals also have internal registers to define the priority level of their initiated transactions.

The QM Packet DMA master port is one master port that does not have priority allocation register inside the IP. The priority level for transaction from this master port is described by QM\_PRIORITY bit field in CHIP\_MISC\_CTL register in section 3.3.22 .

For all other modules, see the respective User Guides in "Related Documentation from Texas Instruments" on page 72 for programmable priority registers.



# 5 C66x CorePac

The C66x CorePac consists of several components:

- The C66x DSP and associated C66x CorePac core
- Level-one and level-two memories (L1P, L1D, L2)
- Data Trace Formatter (DTF)
- Embedded Trace Buffer (ETB)
- Interrupt Controller
- Power-down controller
- External Memory Controller
- Extended Memory Controller
- A dedicated power/sleep controller (LPSC)

The C66x CorePac also provides support for memory protection, bandwidth management (for resources local to the C66x CorePac) and address extension. Figure 5-1 shows a block diagram of the C66x CorePac.

### Figure 5-1 C66x CorePac Block Diagram



For more detailed information on the TMS320C66x CorePac on the C6672 device, see the C66x DSP CorePac User *Guide* in "Related Documentation from Texas Instruments" on page 72.



\_\_\_\_\_

# 5.1 Memory Architecture

Each C66x CorePac of the TMS320C6672 device contains a 512KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a 32KB level-1 data memory (L1D). The device also contain a 4096KB multicore shared memory (MSM). All memory on the C6672 has a unique location in the memory map (see Table 2-2 "Memory Map Summary" on page 17.

After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache can be reconfigured via software through the L1PMODE field of the L1P Configuration Register (L1PCFG) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C66x CorePac. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache.

The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the *DSP Bootloader for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

For more information on the operation L1 and L2 caches, see the *C66x DSP Cache User Guide* in "Related Documentation from Texas Instruments" on page 72.

## 5.1.1 L1P Memory

The L1P memory configuration for the C6672 device is as follows:

• 32K bytes with no wait states

Figure 5-2 shows the available SRAM/cache configurations for L1P.

### Figure 5-2 L1P Memory Configurations





### 5.1.2 L1D Memory

The L1D memory configuration for the C6672 device is as follows:

• 32K bytes with no wait states

Figure 5-3 shows the available SRAM/cache configurations for L1D.

### Figure 5-3 L1D Memory Configurations





5.1.3 L2 Memory

The L2 memory configuration for the C6672 device is as follows:

- Total memory size is 4096KB
- Each core contains 512KB of memory
- Local starting address for each core is 0080 0000h

L2 memory can be configured as all SRAM, all 4-way set-associative cache, or a mix of the two. The amount of L2 memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration Register (L2CFG) of the C66x CorePac. Figure 5-4 shows the available SRAM/cache configurations for L2. By default, L2 is configured as all SRAM after device reset.

### Figure 5-4 L2 Memory Configurations



Global addresses are accessible to all masters in the system. In addition, local memory can be accessed directly by the associated processor through aliased addresses, where the eight MSBs are masked to 0. The aliasing is handled within the C66x CorePac and allows for common code to be run unmodified on multiple cores. For example, address location 0x10800000 is the global base address for C66x CorePac Core 0's L2 memory. C66x CorePac Core 0 can access this location by either using 0x10800000 or 0x00800000. Any other master on the device must use 0x10800000 only. Conversely, 0x00800000 can by used by any of the cores as their own L2 base addresses.

For C66x CorePac Core 0, as mentioned, this is equivalent to 0x10800000 and for C66x CorePac Core 1 this is equivalent to 0x11800000. Local addresses should be used only for shared code or data, allowing a single image to be included in memory. Any code/data targeted to a specific core, or a memory region allocated during run-time by a particular core should always use the global address only.


#### 5.1.4 MSM SRAM

The MSM SRAM configuration for the C6672 device is as follows:

- Memory size is 4096KB
- The MSM SRAM can be configured as shared L2 and/or shared L3 memory
- Allows extension of external addresses from 2GB to up to 8GB
- Has built in memory protection features

The MSM SRAM is always configured as all SRAM. When configured as a shared L2, its contents can be cached in L1P and L1D. When configured in shared L3 mode, it's contents can be cached in L2 also. For more details on external memory address extension and memory protection features, see the *Multicore Shared Memory Controller (MSMC) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

### 5.1.5 L3 Memory

The L3 ROM on the device is 128KB. The ROM contains software used to boot the device. There is no requirement to block accesses from this portion to the ROM.



\_\_\_\_\_

## 5.2 Memory Protection

Memory protection allows an operating system to define who or what is authorized to access L1D, L1P, and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16 pages of L1P (2KB each), 16 pages of L1D (2KB each), and 32 pages of L2 (16KB each). The L1D, L1P, and L2 memory controllers in the C66x CorePac are equipped with a set of registers that specify the permissions for each memory page.

Each page may be assigned with fully orthogonal user and supervisor read, write, and execute permissions. In addition, a page may be marked as either (or both) locally accessible or globally accessible. A local access is a direct DSP access to L1D, L1P, and L2, while a global access is initiated by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers programmed by the DSP count as global accesses. On a secure device, pages can be restricted to secure access only (default) or opened up for public, non-secure access.

The DSP and each of the system masters on the device are all assigned a privilege ID. It is possible to specify whether memory pages are locally or globally accessible.

The AIDx and LOCAL bits of the memory protection page attribute registers specify the memory page protection scheme, see Table 5-1.

| AIDx Bit         | Local Bit | Description                                                                                                    |
|------------------|-----------|----------------------------------------------------------------------------------------------------------------|
| 0                | 0         | No access to memory page is permitted.                                                                         |
| 0                | 1         | Only direct access by DSP is permitted.                                                                        |
| 1                | 0         | Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by the DSP). |
| 1                | 1         | All accesses permitted.                                                                                        |
| End of Table 5-1 |           | ·                                                                                                              |

#### Table 5-1 Available Memory Page Protection Schemes

Faults are handled by software in an interrupt (or an exception, programmable within the C66x CorePac interrupt controller) service routine. A DSP or DMA access to a page without the proper permissions will:

- Block the access reads return 0, writes are ignored
- Capture the initiator in a status register ID, address, and access type are stored
- Signal event to DSP interrupt controller

The software is responsible for taking corrective action to respond to the event and resetting the error status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the *C66x DSP CorePac User Guide* in "Related Documentation from Texas Instruments" on page 72.



### 5.3 Bandwidth Management

When multiple requestors contend for a single C66x CorePac resource, the conflict is resolved by granting access to the highest priority requestor. The following four resources are managed by the Bandwidth Management control hardware:

- Level 1 Program (L1P) SRAM/Cache
- Level 1 Data (L1D) SRAM/Cache
- Level 2 (L2) SRAM/Cache
- Memory-mapped registers configuration bus

The priority level for operations initiated within the C66x CorePac are declared through registers in the C66x CorePac. These operations are:

- DSP-initiated transfers
- User-programmed cache coherency operations
- IDMA-initiated transfers

The priority level for operations initiated outside the C66x CorePac by system peripherals is declared through the Priority Allocation Register (PRI\_ALLOC), see section 4.3 "Bus Priorities" on page 104 for more details. System peripherals with no fields in the PRI\_ALLOC have their own registers to program their priorities.

More information on the bandwidth management features of the C66x CorePac can be found in the C66x DSP *CorePac User Guide* in "Related Documentation from Texas Instruments" on page 72.

### 5.4 Power-Down Control

The C66x CorePac supports the ability to power down various parts of the C66x CorePac. The power down controller (PDC) of the C66x CorePac can be used to power down L1P, the cache control hardware, the DSP, and the entire C66x CorePac. These power-down features can be used to design systems for lower overall system power requirements.

Note—The C6672 does not support power-down modes for the L2 memory at this time.

More information on the power-down features of the C66x CorePac can be found in the C66x DSP CorePac User *Guide* in "Related Documentation from Texas Instruments" on page 72.



SPRS708E—March 2014

### 5.5 C66x CorePac Revision

The version and revision of the C66x CorePac can be read from the CorePac Revision ID Register (MM REVID) located at address 0181 2000h. The MM\_REVID register is shown in Figure 5-5 and described in Table 5-2. The C66x CorePac revision is dependant on the silicon revision being used.

#### CorePac Revision ID Register (MM\_REVID) Address - 0181 2000h Figure 5-5

| 31 16   | 15 0     |
|---------|----------|
| VERSION | REVISION |
| R-n     | R-n      |

Legend: R = Read; -*n* = value after reset

#### Table 5-2 CorePac Revision ID Register (MM\_REVID) Field Descriptions

| Bit    | Field            | Description                                                     |  |
|--------|------------------|-----------------------------------------------------------------|--|
| 31-16  | VERSION          | Version of the C66x CorePac implemented on the device.          |  |
| 15-0   | REVISION         | Revision of the C66x CorePac version implemented on the device. |  |
| End of | End of Table 5-2 |                                                                 |  |

### 5.6 C66x CorePac Register Descriptions

See the C66x DSP CorePac User Guide in "Related Documentation from Texas Instruments" on page 72 for register offsets and definitions.



## 6 Device Operating Conditions

### 6.1 Absolute Maximum Ratings

# Table 6-1 Absolute Maximum Ratings (1) Over Operating Case Temperature Range (Unless Otherwise Noted)

|                                                       | CVDD                                      | -0.3 V to 1.3 V                     |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------|
|                                                       | CVDD1                                     | -0.3 V to 1.3 V                     |
|                                                       | DVDD15                                    | -0.3 V to 2.45 V                    |
|                                                       | DVDD18                                    | -0.3 V to 2.45 V                    |
| Supply voltage range <sup>(2)</sup> :                 | VREFSSTL                                  | 0.49 × DVDD15 to 0.51 × DVDD15      |
|                                                       | VDDT1, VDDT2                              | -0.3 V to 1.3 V                     |
|                                                       | VDDR1, VDDR2, VDDR3, VDDR4                | -0.3 V to 2.45 V                    |
|                                                       | AVDDA1, AVDDA2, AVDDA3                    | -0.3 V to 2.45 V                    |
|                                                       | VSS Ground                                | 0 V                                 |
|                                                       | LVCMOS (1.8V)                             | -0.3 V to DVDD18+0.3 V              |
|                                                       | DDR3                                      | -0.3 V to 2.45 V                    |
|                                                       | I <sup>2</sup> C                          | -0.3 V to 2.45 V                    |
| Input voltage (V <sub>l</sub> ) range:                | LVDS                                      | -0.3 V to DVDD18+0.3 V              |
|                                                       | LJCB                                      | -0.3 V to 1.3 V                     |
|                                                       | SerDes                                    | -0.3 V to CVDD1+0.3 V               |
|                                                       | LVCMOS (1.8V)                             | -0.3 V to DVDD18+0.3 V              |
|                                                       | DDR3                                      | -0.3 V to 2.45 V                    |
| Output voltage (V <sub>O</sub> ) range:               | I <sup>2</sup> C                          | -0.3 V to 2.45 V                    |
|                                                       | SerDes                                    | -0.3 V to CVDD1+0.3 V               |
|                                                       | Commercial                                | 0°C to 85°C                         |
| Operating case temperature range, T <sub>C</sub> :    | Extended                                  | -40°C to 100°C                      |
| (3)                                                   | HBM (human body model) <sup>(4)</sup>     | ±1000 V                             |
| ESD stress voltage, V <sub>ESD</sub> <sup>(3)</sup> : | CDM (charged device model) <sup>(5)</sup> | ±250 V                              |
|                                                       | LVCMOS (1.8V)                             |                                     |
| Overshoot/undershoot <sup>(6)</sup>                   | DDR3                                      | 20% Overshoot/Undershoot for 20% of |
|                                                       | I <sup>2</sup> C                          | Signal Duty Cycle                   |
| Storage temperature range, T <sub>stg</sub> :         |                                           | -65°C to 150°C                      |
| End of Table 6-1                                      |                                           |                                     |

1 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2 All voltage values are with respect to V<sub>SS</sub>.

3 Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.

4 Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500 V HBM is possible if necessary precautions are taken. Pins listed as 1000 V may actually have higher performance.

5 Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance.

6 Overshoot/Undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8-V LVCMOS signals is DVDD18 + 0.20 × DVDD18 and maximum undershoot value would be V<sub>SS</sub> - 0.20 × DVDD18



SPRS708E—March 2014

## 6.2 Recommended Operating Conditions

#### Recommended Operating Conditions (1) (2) Table 6-2

|                                  |                                |                  | Min                          | Nom                        | Max             | Unit |
|----------------------------------|--------------------------------|------------------|------------------------------|----------------------------|-----------------|------|
| CVDD                             | SR core supply                 | Initial Startup  | VINITnom × 0.95              | 1.1 <sup>(3)</sup>         | VINITnom × 1.05 |      |
|                                  |                                | 1000MHz - Device | SRVnom <sup>(4)</sup> × 0.95 | 0.85-1.1                   | SRVnom × 1.05   |      |
|                                  |                                | 1250MHz - Device | SRVnom × 0.95                | 0.9-1.1                    | SRVnom × 1.05   | V    |
|                                  |                                | 1500MHz - Device | SRVnom × 0.95                | 0.9-1.1                    | SRVnom × 1.05   |      |
| CVDD1                            | Core supply voltage for memory | ory array        | 0.95                         | 1                          | 1.05            | V    |
| DVDD18                           | 1.8-V supply I/O voltage       |                  | 1.71                         | 1.8                        | 1.89            | V    |
| DVDD15                           | 1.5-V supply I/O voltage       |                  | 1.425                        | 1.5                        | 1.575           | V    |
| VREFSSTL                         | DDR3 reference voltage         |                  | 0.49 × DVDD15                | $0.5 \times \text{DVDD15}$ | 0.51 × DVDD15   | V    |
| V <sub>DDRx</sub> <sup>(5)</sup> | SerDes regulator supply        |                  | 1.425                        | 1.5                        | 1.575           | V    |
| V <sub>DDAx</sub>                | PLL analog supply              |                  | 1.71                         | 1.8                        | 1.89            | V    |
| V <sub>DDTx</sub>                | SerDes termination supply      |                  | 0.95                         | 1                          | 1.05            | V    |
| V <sub>SS</sub>                  | Ground                         |                  | 0                            | 0                          | 0               | V    |
|                                  |                                | LVCMOS (1.8 V)   | 0.65 × DVDD18                |                            |                 | V    |
| V <sub>IH</sub>                  | High-level input voltage       | I <sup>2</sup> C | 0.7 × DVDD18                 |                            |                 | V    |
|                                  |                                | DDR3 EMIF        | VREFSSTL + 0.1               |                            |                 | V    |
|                                  |                                | LVCMOS (1.8 V)   |                              |                            | 0.35 × DVDD18   | V    |
| V <sub>IL</sub>                  | Low-level input voltage        | DDR3 EMIF        | -0.3                         |                            | VREFSSTL - 0.1  | V    |
|                                  |                                | l <sup>2</sup> C |                              |                            | 0.3 × DVDD18    | V    |
| _                                |                                | Commercial       | 0                            |                            | 85              | °C   |
| Т <sub>С</sub>                   | Operating case temperature     | Extended         | -40                          |                            | 100             | °C   |

#### End of Table 6-2

1 All differential clock inputs comply with the LVDS Electrical Specification, IEEE 1596.3-1996 and all SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002.

2 All SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002.

3 The initial CVDD voltage at power on will be 1.1V nominal and it must transition to VID set value immediately after being presented on VCNTL pins. This is required to maintain full power functionality and reliability targets guaranteed by TI.

4 SRVnom refers to the unique SmartReflex core supply voltage set from the factory for each individual device.

5 Where x = 1, 2, 3, 4... to indicate all supplies of the same kind.



### 6.3 Electrical Characteristics

#### Table 6-3 **Electrical Characteristics**

Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted)

|                                | Param                          | eter                            | Test Conditions <sup>(1)</sup>                      | Min           | Тур  | Max                | Uni |
|--------------------------------|--------------------------------|---------------------------------|-----------------------------------------------------|---------------|------|--------------------|-----|
|                                |                                | LVCMOS (1.8 V)                  | $I_{O} = I_{OH}$                                    | DVDD18 - 0.45 |      |                    |     |
| V <sub>OH</sub>                | High-level output voltage      | DDR3                            |                                                     | DVDD15 - 0.4  |      |                    | V   |
|                                |                                | I <sup>2</sup> C <sup>(2)</sup> |                                                     |               |      |                    |     |
|                                |                                | LVCMOS (1.8 V)                  | $I_{O} = I_{OL}$                                    |               |      | 0.45               |     |
| V <sub>OL</sub>                | Low-level output voltage       | DDR3                            |                                                     |               |      | 0.4                | ۷   |
|                                |                                | l <sup>2</sup> C                | $I_0 = 3$ mA, pulled up to 1.8 V                    |               |      | 0.4                |     |
|                                |                                |                                 | No IPD/IPU                                          | -5            |      | 5                  |     |
|                                |                                | LVCMOS (1.8 V)                  | Internal pullup                                     | 50            | 100  | 170 <sup>(4)</sup> |     |
| l <sub>l</sub> <sup>(3)</sup>  | Input current [DC]             |                                 | Internal pulldown                                   | -170          | -100 | -50                | μA  |
|                                |                                | l <sup>2</sup> C                | 0.1 × DVDD18 V < V <sub>I</sub> < 0.9 ×<br>DVDD18 V | -10           |      | 10                 |     |
|                                |                                | LVCMOS (1.8 V)                  |                                                     |               |      | -6                 |     |
| I <sub>ОН</sub>                | High-level output current [DC] | DDR3                            |                                                     |               |      | -8                 | mA  |
|                                |                                | I <sup>2</sup> C <sup>(5)</sup> |                                                     |               |      |                    |     |
|                                |                                | LVCMOS (1.8 V)                  |                                                     |               |      | 6                  |     |
| I <sub>OL</sub>                | Low-level output current [DC]  | DDR3                            |                                                     |               |      | 8                  | mA  |
|                                |                                | I <sup>2</sup> C                |                                                     |               |      | 3                  | ĺ   |
|                                |                                | LVCMOS (1.8 V)                  |                                                     | -2            |      | 2                  |     |
| I <sub>OZ</sub> <sup>(6)</sup> | Off-state output current [DC]  | DDR3                            |                                                     | -2            |      | 2                  | μA  |
|                                |                                | I <sup>2</sup> C                |                                                     | -2            |      | 2                  |     |

1 For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table.

 $2~~\text{I}^2\text{C}$  uses open collector IOs and does not have a  $V_{\text{OH}}$  Minimum.

3 I<sub>1</sub> applies to input-only pins and bidirectional pins. For input-only pins, I<sub>1</sub> indicates the input leakage current. For bidirectional pins, I<sub>1</sub> includes input leakage current and off-state (Hi-Z) output leakage current.

4 For  $\overline{\text{RESETSTAT}}$ , max DC input current is 300  $\mu$ A.

5 I<sup>2</sup>C uses open collector IOs and does not have an I<sub>OH</sub> Maximum.

6 I<sub>OZ</sub> applies to output-only pins, indicating off-state (Hi-Z) output leakage current.



### 6.4 Power Supply to Peripheral I/O Mapping

## Table 6-4Power Supply to Peripheral I/O Mapping

Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted)

|           | Power Supply                                                      | I/O Buffer Type   | Associated Peripheral                             |
|-----------|-------------------------------------------------------------------|-------------------|---------------------------------------------------|
|           |                                                                   |                   | CORECLK(P N) PLL input buffers                    |
|           |                                                                   |                   | SRIOSGMIICLK(P N) SerDes PLL input buffers        |
| CVDD      |                                                                   | ЫСВ               | DDRCLK(P N) PLL input buffers                     |
| CVDD      | Supply Core Voltage                                               | LICB              | PCIECLK(P N) SerDes PLL input buffers             |
|           |                                                                   |                   | MCMCLK(P N) SerDes PLL input buffers              |
|           |                                                                   |                   | PASSCLK(P N) PLL input buffers                    |
| DVDD15    | 1.5-V supply I/O voltage                                          | DDR3 (1.5 V)      | All DDR3 memory controller peripheral I/O buffers |
|           | 1.8-V supply I/O voltage                                          |                   | All GPIO peripheral I/O buffers                   |
|           |                                                                   |                   | All JTAG and EMU peripheral I/O buffers           |
|           |                                                                   | LVCMOS (1.8 V)    | All Timer peripheral I/O buffers                  |
|           |                                                                   |                   | All SPI peripheral I/O buffers                    |
|           |                                                                   |                   | All RESETs, NMI, Control peripheral I/O buffers   |
| DVDD18    |                                                                   |                   | All Hyperlink sideband peripheral I/O buffers     |
| 000010    |                                                                   |                   | All MDIO peripheral I/O buffers                   |
|           |                                                                   |                   | All UART peripheral I/O buffers                   |
|           |                                                                   |                   | All TSIP0 and TSIP1 peripheral I/O buffers        |
|           |                                                                   |                   | All EMIF16 peripheral I/O buffers                 |
|           |                                                                   | Open-drain (1.8V) | All I <sup>2</sup> C peripheral I/O buffers       |
|           |                                                                   | Open diam (1.5V)  | All SmartReflex peripheral I/O buffers            |
| VDDT1     | Hyperlink SerDes termination and analog front-end supply          | SerDes/CML        | Hyperlink SerDes CML IO buffers                   |
| VDDT2     | SRIO/SGMII/PCIE SerDes termination and analog front-end<br>supply | SerDes/CML        | SRIO/SGMII/PCIE SerDes CML IO buffers             |
| End of Ta | ble 6-4                                                           |                   |                                                   |

1 Note that this table does not attempt to describe all functions of all power supply terminals, but only those whose purpose it is to power peripheral I/O buffers and clock input buffers.

2 See the Hardware Design Guide for KeyStone I Devices in "Related Documentation from Texas Instruments" on page 72 for more information about individual peripheral I/O.



## 7 Peripheral Information and Electrical Specifications

This chapter covers the various peripherals on the TMS320C6672 DSP. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter.

### 7.1 Parameter Information

This section describes the conditions used to capture the electrical data seen in this chapter.

### 7.1.1 Timing Parameters and Board Routing Analysis

The timing parameter values specified in this data manual do not include delays caused by board routings. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the *Using IBIS Models for Timing Analysis* application report in "Related Documentation from Texas Instruments" on page 72. If needed, external logic hardware such as buffers may be used to compensate any timing differences.

### 7.1.2 1.8-V LVCMOS Signal Transition Levels

All input and output timing parameters are referenced to VDD/2 for both 0 and 1 logic levels.

### Figure 7-1 Input and Output Voltage Reference Levels for AC Timing Measurements



All rise and fall transition timing parameters are referenced to  $V_{IL}$  MAX and  $V_{IH}$  MIN for input clocks,  $V_{OL}$  MAX and  $V_{OH}$  MIN for output clocks.

#### Figure 7-2 Rise and Fall Transition Time Voltage Reference Levels



## 7.2 Recommended Clock and Control Signal Transition Behavior

All clocks and control signals *must* transition between  $\rm V_{IH}$  and  $\rm V_{IL}$  (or between  $\rm V_{IL}$  and  $\rm V_{IH})$  in a monotonic manner.



SPRS708E—March 2014

### 7.3 Power Supplies

The following sections describe the proper power-supply sequencing and timing needed to properly power on the C6672. The various power supply rails and their primary function is listed in Table 7-1.

| Name        | Primary Function                          | Voltage        | Notes                                                                                                               |  |
|-------------|-------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------|--|
| CVDD        | SmartReflex core supply voltage           | 0.9 V to 1.1 V | Includes core voltage for DDR3 module                                                                               |  |
| CVDD1       | Core supply voltage for memory array      | 1.0 V          | Fixed supply at 1.0 V                                                                                               |  |
| VDDT1       | HyperLink SerDes termination supply       | 1.0 V          | Filtered version of CVDD1. Special considerations for noise. Filter is not needed if HyperLink is not in use.       |  |
| VDDT2       | SGMII/SRIO/PCIE SerDes termination supply | 1.0 V          | Filtered version of CVDD1. Special considerations for noise. Filter is not needed if SGMII/SRIO/PCIE is not in use. |  |
| DVDD15      | 1.5-V DDR3 IO supply                      | 1.5 V          | Fixed supply at 1.5V                                                                                                |  |
| VDDR1       | HyperLink SerDes regulator supply         | 1.5 V          | Filtered version of DVDD15. Special considerations for noise. Filter is not needed if HyperLink is not in use.      |  |
| VDDR2       | PCIE SerDes regulator supply              | 1.5 V          | Filtered version of DVDD15. Special considerations for noise. Filter is not needed if PCIe is not in use.           |  |
| VDDR3       | SGMII SerDes regulator supply             | 1.5 V          | Filtered version of DVDD15. Special considerations for noise. Filter is not needed if SGMII is not in use.          |  |
| VDDR4       | SRIO SerDes regulator supply              | 1.5 V          | Filtered version of DVDD15. Special considerations for noise. Filter is not needed if SRIO is not in use.           |  |
| DVDD18      | 1.8-V IO supply                           | 1.8V           | Fixed supply at 1.8V                                                                                                |  |
| AVDDA1      | Main PLL supply                           | 1.8 V          | Filtered version of DVDD18. Special considerations for noise.                                                       |  |
| AVDDA2      | DDR3 PLL supply                           | 1.8 V          | Filtered version of DVDD18. Special considerations for noise.                                                       |  |
| AVDDA3      | PASS PLL supply                           | 1.8 V          | Filtered version of DVDD18. Special considerations for noise.                                                       |  |
| VREFSSTL    | 0.75-V DDR3 reference voltage             | 0.75 V         | Should track the 1.5-V supply. Use 1.5 V as source.                                                                 |  |
| VSS         | Ground                                    | GND            | Ground                                                                                                              |  |
| End of Tabl | e 7-1                                     |                |                                                                                                                     |  |

Table 7-1 Power Supply Rails on the TMS320C6672



### 7.3.1 Power-Supply Sequencing

This section defines the requirements for a power up sequencing from a power-on reset condition. There are two acceptable power sequences for the device. The first sequence stipulates the core voltages starting before the IO voltages as shown below.

- 1. CVDD
- 2. CVDD1, VDDT1-2
- 3. DVDD18, AVDD1, AVDD2
- 4. DVDD15, VDDR1-4

The second sequence provides compatibility with other TI processors with the IO voltage starting before the core voltages as shown below.

- 1. DVDD18, AVDD1, AVDD2
- 2. CVDD
- 3. CVDD1, VDDT1-2
- 4. DVDD15, VDDR1-4

The clock input buffers for CORECLK, DDRCLK, PASSCLK, SRIOSGMIICLK, PCIECLK and MCMCLK use CVDD as a supply voltage. These clock inputs are not failsafe and must be held in a high-impedance state until CVDD is at a valid voltage level. Driving these clock inputs high before CVDD is valid could cause damage to the device. Once CVDD is valid it is acceptable that the P and N legs of these CLKs may be held in a static state (either high and low or low and high) until a valid clock frequency is needed at that input. To avoid internal oscillation the clock inputs should be removed from the high impedance state shortly after CVDD is present.

If a clock input is not used it must be held in a static state. To accomplish this the N leg should be pulled to ground through a 1K ohm resistor. The P leg should be tied to CVDD to ensure it won't have any voltage present until CVDD is active. Connections to the IO cells powered by DVDD18 and DVDD15 are not failsafe and should not be driven high before these voltages are active. Driving these IO cells high before DVDD18 or DVDD15 are valid could cause damage to the device.

The device initialization is broken into two phases. The first phase consists of the time period from the activation of the first power supply until the point at which all supplies are active and at a valid voltage level. Either of the sequencing scenarios described above can be implemented during this phase. The figures below show both the core-before-IO voltage sequence and the IO-before-core voltage sequence. POR must be held low for the entire power stabilization phase.

This is followed by the device initialization phase. The rising edge of POR followed by the rising edge of RESETFULL will trigger the end of the initialization phase but both must be inactive for the initialization to complete. POR must always go inactive before RESETFULL goes inactive as described below. REFCLK in the following section refers to the clock input that has been selected as the source for the main PLL and SYSCLK1 refers to the main PLL output that is used by the CorePac, see Figure 7-9 for more details.



SPRS708E—March 2014

#### 7.3.1.1 Core-Before-IO Power Sequencing

Figure 7-3 shows the power sequencing and reset control of TMS320C6672 for device initialization. POR may be removed after the power has been stable for the required 100 µsec. RESETFULL must be held low for a period after the rising edge of POR but may be held low for longer periods if necessary. The configuration bits shared with the GPIO pins will be latched on the rising edge of RESETFULL and must meet the setup and hold times specified. REFCLK must always be active before POR can be removed. Core-before-IO power sequencing is defined in Table 7-2.

Note—TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp. Each supply must ramp monotonically and must reach a stable valid level within 20ms.



Figure 7-3 **Core Before IO Power Sequencing** 



| Time      | System State                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Begin Power Stabilization Phase<br>• CVDD (core AVS) ramps up.                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has async reset (created from POR) is put into the reset state.                                                                                                                                                                                                                                                                                            |
|           | Once enabled, the power supply should ramp to its valid voltage level within 20 ms.                                                                                                                                                                                                                                                                                                                                                                                  |
| 2a        | • CVDD1 (core constant) ramps at the same time or shortly following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage.                                                                                                                                                                                                                                    |
|           | <ul> <li>The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1.</li> <li>The maximum duration is 100 ms.</li> </ul> |
| 2b        | Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or be held in a static state with one leg high and one leg low.                                                                                                                                                                                                                                   |
| 2c        | • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t6.                                                                                                                                                                                                                                                                                                                   |
| 3         | <ul> <li>Filtered versions of 1.8 V can ramp simultaneously with DVDD18.</li> <li>RESETSTAT is driven low once the DVDD18 supply is available.</li> <li>All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device.</li> </ul>                                                                                                 |
| 4a        | • DVDD15 (1.5 V) supply is ramped up after DVDD18 is valid. Although ramping DVDD18 and DVDD15 simultaneously is permitted, the voltage for DVDD15 <i>must never exceed</i> DVDD18.                                                                                                                                                                                                                                                                                  |
| 4b        | • RESET may be driven high any time after DVDD18 is at a valid level. In a POR-controlled boot, RESET must be high before POR is driven high.                                                                                                                                                                                                                                                                                                                        |
| 5         | • POR must continue to remain low for at least 100 µs after power has stabilized.                                                                                                                                                                                                                                                                                                                                                                                    |
|           | End Power Stabilization Phase                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6         | • Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs.                                                                                                                                                                                                        |
| 7         | • RESETFULL must be held low for at least 24 transitions of the REFCLK after POR has stabilized at a high level.                                                                                                                                                                                                                                                                                                                                                     |
| 8         | • The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin.     • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles.                                                                                                                                                                                                   |
|           | End Device Initialization Phase                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9         | • GPIO configuration bits must be valid for at least 12 transitions of the REFCLK before the rising edge of RESETFULL                                                                                                                                                                                                                                                                                                                                                |
| 10        | • GPIO configuration bits must be held valid for at least 12 transitions of the REFCLK after the rising edge of RESETFULL                                                                                                                                                                                                                                                                                                                                            |
| End of Ta |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Table 7-2 Core Before IO Power Sequencing

## TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**

SPRS708E—March 2014



### 7.3.1.2 IO-Before-Core Power Sequencing

The timing diagram for IO-before-core power sequencing is shown in Figure 7-4 and defined in Table 7-3.

Note—TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp. Each supply must ramp monotonically and must reach a stable valid level within 20 ms.

#### Figure 7-4 **IO Before Core Power Sequencing**





| Time      | System State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | <ul> <li>Begin Power Stabilization Phase         <ul> <li>Because POR is low, all the core logic having async reset (created from POR) are put into reset state once the core supply ramps. POR must remain low through Power Stabilization Phase.</li> <li>Filtered versions of 1.8 V can ramp simultaneously with DVDD18.</li> <li>RESETSTAT is driven low once the DVDD18 supply is available.</li> <li>All input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before</li> </ul> </li> </ul> |
|           | <ul> <li>DVDD18 could cause damage to the device.</li> <li>Once enabled, the power supply should ramp to its valid voltage level within 20 ms.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2a        | RESET may be driven high anytime after DVDD18 is at a valid level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2b        | • CVDD (core AVS) ramps up.     • The maximum duration is 100 ms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3a        | • CVDD1 (core constant) ramps at the same time or following CVDD. Although ramping CVDD1 and CVDD simultaneously is permitted the voltage for CVDD1 <i>must never exceed</i> CVDD until after CVDD has reached a valid voltage.                                                                                                                                                                                                                                                                                                                                            |
|           | • The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the WLs in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst case current could be on the order of twice the specified draw of CVDD1.                                                                                                                                                                  |
| 3b        | • Once CVDD is valid, the clock drivers should be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held in a static state with one leg high and one leg low.                                                                                                                                                                                                                                                                                                                                          |
| 3c        | • The DDRCLK and REFCLK may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by t6.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4         | DVDD15 (1.5 V) supply is ramped up after CVDD1 is valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5         | • POR must continue to remain low for at least 100 μs after power has stabilized.<br>End Power Stabilization Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6         | <ul> <li>Begin Device Initialization</li> <li>Device initialization requires 500 REFCLK periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs.</li> <li>POR must remain low.</li> </ul>                                                                                                                                                                                                                          |
| 7         | <ul> <li>RESETFULL is held low for at least 24 transitions of the REFCLK after POR has stabilized at a high level.</li> <li>The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin.</li> </ul>                                                                                                                                                                                                                                                                                                                                |
| 8         | • Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | End Device Initialization Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9         | • GPIO configuration bits must be valid for at least 12 transitions of the REFCLK before the rising edge of RESETFULL                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10        | • GPIO configuration bits must be held valid for at least 12 transitions of the REFCLK after the rising edge of RESETFULL                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| End of Ta | able 7-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### Table 7-3 IO Before Core Power Sequencing

#### 7.3.1.3 Prolonged Resets

Holding the device in POR, RESETFULL, or RESET for long periods of time will affect the long term reliability of the part. The device should not be held in a reset for times exceeding one hour and should not be held in reset for more the 5% of the time during which power is applied. Exceeding these limits will cause a gradual reduction in the reliability of the part. This can be avoided by allowing the DSP to boot and then configuring it to enter a hibernation state soon after power is applied. This will satisfy the reset requirement while limiting the power consumption of the device.



SPRS708E—March 2014

### 7.3.1.4 Clocking During Power Sequencing

Some of the clock inputs are required to be present for the device to initialize correctly, but behavior of many of the clocks is contingent on the state of the boot configuration pins. Table 7-4 describes the clock sequencing and the conditions that affect the clock operation. Note that all clock drivers should be in a high-impedance state until CVDD is at a valid level and that all clock inputs either be active or in a static state with one leg pulled low and the other connected to CVDD.

| Clock          | Condition                                                   | Sequencing                                                                                                                        |
|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| DDRCLK         | None                                                        | Must be present 16 µsec before POR transitions high.                                                                              |
| CORECLK        | None                                                        | CORECLK used to clock the core PLL. It must be present 16 µsec before POR transitions high.                                       |
|                | PASSCLKSEL = 0                                              | PASSCLK is not used and should be tied to a static state.                                                                         |
| PASSCLK        | PASSCLKSEL = 1                                              | PASSCLK is used as a source for the PASS PLL. It must be present before the PASS PLL is removed from reset and programmed.        |
|                | An SGMII port will be used.                                 | SRIOSGMIICLK must be present 16 µsec before POR transitions high.                                                                 |
|                | SGMII will not be used. SRIO will be used as a boot device. | SRIOSGMIICLK must be present 16 µsec before POR transitions high.                                                                 |
| SRIOSGMIICLK   | SGMII will not be used. SRIO will be used after boot.       | SRIOSGMIICLK is used as a source to the SRIO SerDes PLL. It must be present before the SRIO is removed from reset and programmed. |
|                | SGMII will not be used. SRIO will not be used.              | SRIOSGMIICLK is not used and should be tied to a static state.                                                                    |
|                | PCIE will be used as a boot device.                         | PCIECLK must be present 16 µsec before POR transitions high.                                                                      |
| PCIECLK        | PCIE will be used after boot.                               | PCIECLK is used as a source to the PCIE SerDes PLL. It must be present before the PCIE is removed from reset and programmed.      |
|                | PCIE will not be used.                                      | PCIECLK is not used and should be tied to a static state.                                                                         |
| MCMCLK         | HyperLink will be used as a boot device.                    | MCMCLK must be present 16usec before POR transitions high.                                                                        |
|                | HyperLink will be used after boot.                          | MCMCLK is used as a source to the MCM SerDes PLL. It must be present before the HyperLink is removed from reset and programmed.   |
|                | HyperLink will not be used.                                 | MCMCLK is not used and should be tied to a static state.                                                                          |
| End of Table 7 | -4                                                          |                                                                                                                                   |

#### **Clock Sequencing** Table 7-4

### 7.3.2 Power-Down Sequence

The power down sequence is the exact reverse of the power-up sequence described above. The goal is to prevent a large amount of static current and to prevent overstress of the device. A power-good circuit that monitors all the supplies for the device should be used in all designs. If a catastrophic power supply failure occurs on any voltage rail, POR should transition to low to prevent over-current conditions that could possibly impact device reliability.

A system power monitoring solution is needed to shut down power to the board if a power supply fails. Long-term exposure to an environment in which one of the power supply voltages is no longer present will affect the reliability of the device. Holding the device in reset is not an acceptable solution because prolonged periods of time with an active reset can also affect long term reliability.

### 7.3.3 Power Supply Decoupling and Bulk Capacitors

In order to properly decouple the supply planes on the PCB from system noise, decoupling and bulk capacitors are required. Bulk capacitors are used to minimize the effects of low frequency current transients and decoupling or bypass capacitors are used to minimize higher frequency noise. For recommendations on selection of Power Supply Decoupling and Bulk capacitors see the Hardware Design Guide for KeyStone I Devices in "Related Documentation from Texas Instruments" on page 72.



### 7.3.4 SmartReflex

Increasing the device complexity increases its power consumption and with the smaller transistor structures responsible for higher achievable clock rates and increased performance, comes an inevitable penalty: increasing the leakage currents. Leakage currents are present in any active circuit, independent of clock rates and usage scenarios. This static power consumption is mainly determined by the transistor type and process technology used in the manufacture of the device. Higher clock rates also increase dynamic power — the power used when transistors switch. The dynamic power depends mostly on a specific usage scenario, clock rates, and I/O activity.

Texas Instruments' SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining device performance.

SmartReflex in the TMS320C6672 is a feature that allows the core supply voltage to be optimized based on the process corner of the device. Voltage selection is done using four VCNTL pins that control the output voltage of the core voltage regulator supplying the device. Each TMS320C6672 device in an application requires a separate core voltage regulator. For information on the implementation of SmartReflex, see the *Power Consumption Summary for KeyStone C66x Devices* application report and the *Hardware Design Guide for KeyStone I Devices* in "Related Documentation from Texas Instruments" on page 72.

#### Table 7-5 SmartReflex 4-Pin VID Interface Switching Characteristics (see Figure 7-5)

| No.  | Parameter                                                                         | Min  | Мах                    | Unit |
|------|-----------------------------------------------------------------------------------|------|------------------------|------|
| 110. |                                                                                   |      | тах                    | 0    |
| 1    | td(VCNTL[2:0]-VCNTL[3]) Delay Time - VCNTL[2:0] valid after VCNTL[3] low          |      | 300.00                 | ns   |
| 2    | toh(VCNTL[3] -VCNTL[2:0]) Output Hold Time - VCNTL[2:0] valid after VCNTL[3] low  | 0.07 | 172020C <sup>(1)</sup> | ms   |
| 3    | td(VCNTL[2:0]-VCNTL[3]) Delay Time - VCNTL[2:0] valid after VCNTL[3] high         |      | 300.00                 | ns   |
| 4    | toh(VCNTL[3] -VCNTL[2:0]) Output Hold Time - VCNTL[2:0] valid after VCNTL[3] high | 0.07 | 172020C                | ms   |
| 5    | VCNTL being valid to CVDD being switched to SmartReflex Voltage <sup>(2)</sup>    |      | 10                     | ms   |
| End  | of Table 7-5                                                                      |      |                        |      |

1 C = 1/SYSCLK1 frequency in ms

2 SmartReflex voltage must be set before execution of application code

#### Figure 7-5 SmartReflex 4-Pin VID Interface Timing



**Note**—The initial CVDD voltage (IV) at power on will be 1.1 V nominal and it must transition to the VID set value immediately after being presented on the VCNTL pins. This is required to maintain full power functionality and reliability targets specified by TI.



### 7.4 Power Sleep Controller (PSC)

The Power Sleep Controller (PSC) controls overall device power by turning off unused power domains and gating off clocks to individual peripherals and modules. The PSC provides the user with an interface to control several important power and clock operations.

For information on the Power Sleep Controller, see the *Power Sleep Controller (PSC) for KeyStone Devices* User Guide in "Related Documentation from Texas Instruments" on page 72.

### 7.4.1 Power Domains

The device has several power domains that can be turned on for operation or off to minimize power dissipation. The global power/sleep controller (GPSC) is used to control the power gating of various power domains.

Table 7-6 shows the TMS320C6672 power domains.

| Domain     | Block(s)                      | Note                         | Power Connection                                     |
|------------|-------------------------------|------------------------------|------------------------------------------------------|
| 0          | Most peripheral logic         | Cannot be disabled           | Always on                                            |
| 1          | Per-core TETB and System TETB | RAMs can be powered down     | Software control                                     |
| 2          | Packet Coprocessor            | Logic can be powered down    | Software control                                     |
| 3          | PCIe                          | Logic can be powered down    | Software control                                     |
| 4          | SRIO                          | Logic can be powered down    | Software control                                     |
| 5          | HyperLink                     | Logic can be powered down    | Software control                                     |
| 6          | Reserved                      | Reserved                     | Reserved                                             |
| 7          | MSMC RAM                      | MSMC RAM can be powered down | Software control                                     |
| 8          | C66x CorePac 0, L1/L2 RAMs    | L2 RAMs can sleep            | Software control via C66x core. For details, see the |
| 9          | C66x CorePac 1, L1/L2 RAMs    | L2 RAMs can sleep            | C66x DSP CorePac User Guide.                         |
| 10         | Reserved                      | Reserved                     | Reserved                                             |
| 11         | Reserved                      | Reserved                     | Reserved                                             |
| 12         | Reserved                      | Reserved                     | Reserved                                             |
| 13         | Reserved                      | Reserved                     | Reserved                                             |
| 14         | Reserved                      | Reserved                     | Reserved                                             |
| 15         | Reserved                      | Reserved                     | Reserved                                             |
| End of Tak | ble 7-6                       | · · · ·                      |                                                      |



### 7.4.2 Clock Domains

Cock gating to each logic block is managed by the local power/sleep controllers (LPSCs) of each module. For modules with a dedicated clock or multiple clocks, the LPSC communicates with the PLL controller to enable and disable that module's clock(s) at the source. For modules that share a clock with other modules, the LPSC controls the clock gating.

Table 7-7 shows the TMS320C6672 clock domains.

| LPSC Number      | Module(s)                                                             | Notes                         |
|------------------|-----------------------------------------------------------------------|-------------------------------|
| 0                | Shared LPSC for all peripherals other than those listed in this table | Always on                     |
| 1                | SmartReflex                                                           | Always on                     |
| 2                | DDR3 EMIF                                                             | Always on                     |
| 3                | EMIF16 and SPI                                                        | Software control              |
| 4                |                                                                       | Software control              |
| 5                |                                                                       | Software control              |
| -                | Debug Subsystem and Tracers                                           |                               |
| 6                | Per-core TETB and System TETB                                         | Software control              |
| 7                | Packet Accelerator                                                    | Software control              |
| 8                | Ethernet SGMIIs                                                       | Software control              |
| 9                | Security Accelerator                                                  | Software control              |
| 10               | PCle                                                                  | Software control              |
| 11               | SRIO                                                                  | Software control              |
| 12               | HyperLink                                                             | Software control              |
| 13               | Reserved                                                              | Reserved                      |
| 14               | MSMC RAM                                                              | Software control              |
| 15               | C66x CorePac 0 and Timer 0                                            | Always on                     |
| 16               | C66x CorePac 1 and Timer 1                                            | Always on                     |
| 17               | Reserved                                                              | Reserved                      |
| 18               | Reserved                                                              | Reserved                      |
| 19               | Reserved                                                              | Reserved                      |
| 20               | Reserved                                                              | Reserved                      |
| 21               | Reserved                                                              | Reserved                      |
| 22 Reserved      |                                                                       | Reserved                      |
| No LPSC          | Bootcfg, PSC, and PLL controller                                      | These modules do not use LPSC |
| End of Table 7-7 |                                                                       |                               |

### Table 7-7 Clock Domains



### 7.4.3 PSC Register Memory Map

Table 7-8 shows the PSC Register memory map.

#### Table 7-8 PSC Register Memory Map (Part 1 of 3)

| Table 7-8     | r 5C negister Men | nory Map (Part 1 of 3)                                          |
|---------------|-------------------|-----------------------------------------------------------------|
| Offset        | Register          | Description                                                     |
| 0x000         | PID               | Peripheral Identification Register                              |
| 0x004 - 0x010 | Reserved          | Reserved                                                        |
| 0x014         | VCNTLID           | Voltage Control Identification Register <sup>(1)</sup>          |
| 0x018 - 0x11C | Reserved          | Reserved                                                        |
| 0x120         | PTCMD             | Power Domain Transition Command Register                        |
| 0x124         | Reserved          | Reserved                                                        |
| 0x128         | PTSTAT            | Power Domain Transition Status Register                         |
| 0x12C - 0x1FC | Reserved          | Reserved                                                        |
| 0x200         | PDSTAT0           | Power Domain Status Register 0 (AlwaysOn)                       |
| 0x204         | PDSTAT1           | Power Domain Status Register 1 (Per-core TETB and System TETB)  |
| 0x208         | PDSTAT2           | Power Domain Status Register 2 (Packet Coprocessor)             |
| 0x20C         | PDSTAT3           | Power Domain Status Register 3 (PCIe)                           |
| 0x210         | PDSTAT4           | Power Domain Status Register 4 (SRIO)                           |
| 0x214         | PDSTAT5           | Power Domain Status Register 5 (HyperLink)                      |
| 0x218         | PDSTAT6           | Power Domain Status Register 6 (Reserved)                       |
| 0x21C         | PDSTAT7           | Power Domain Status Register 7 (MSMC RAM)                       |
| 0x220         | PDSTAT8           | Power Domain Status Register 8 (C66x CorePac 0)                 |
| 0x224         | PDSTAT9           | Power Domain Status Register 9 (C66x CorePac 1)                 |
| 0x228         | Reserved          | Reserved                                                        |
| 0x22C         | Reserved          | Reserved                                                        |
| 0x230         | Reserved          | Reserved                                                        |
| 0x234         | Reserved          | Reserved                                                        |
| 0x238         | Reserved          | Reserved                                                        |
| 0x23C         | Reserved          | Reserved                                                        |
| 0x240 - 0x2FC | Reserved          | Reserved                                                        |
| 0x300         | PDCTL0            | Power Domain Control Register 0 (AlwaysOn)                      |
| 0x304         | PDCTL1            | Power Domain Control Register 1 (Per-core TETB and System TETB) |
| 0x308         | PDCTL2            | Power Domain Control Register 2 (Packet Coprocessor)            |
| 0x30C         | PDCTL3            | Power Domain Control Register 3 (PCIe)                          |
| 0x310         | PDCTL4            | Power Domain Control Register 4 (SRIO)                          |
| 0x314         | PDCTL5            | Power Domain Control Register 5 (HyperLink)                     |
| 0x318         | PDCTL6            | Power Domain Control Register 6 (Reserved)                      |
| 0x31C         | PDCTL7            | Power Domain Control Register 7 (MSMC RAM)                      |
| 0x320         | PDCTL8            | Power Domain Control Register 8 (C66x CorePac 0)                |
| 0x324         | PDCTL9            | Power Domain Control Register 9 (C66x CorePac 1)                |
| 0x328         | Reserved          | Reserved                                                        |
| 0x32C         | Reserved          | Reserved                                                        |
| 0x330         | Reserved          | Reserved                                                        |
| 0x334         | Reserved          | Reserved                                                        |
| 0x338         | Reserved          | Reserved                                                        |
| 0x33C         | Reserved          | Reserved                                                        |



| Offset        | Register | Description                                               |
|---------------|----------|-----------------------------------------------------------|
| 0x340 - 0x7FC | Reserved | Reserved                                                  |
| 0x800         | MDSTAT0  | Module Status Register 0 (Never Gated)                    |
| 0x804         | MDSTAT1  | Module Status Register 1 (SmartReflex)                    |
| 0x808         | MDSTAT2  | Module Status Register 2 (DDR3 EMIF)                      |
| 0x80C         | MDSTAT3  | Module Status Register 3 (EMIF16 and SPI)                 |
| 0x810         | MDSTAT4  | Module Status Register 4 (TSIP)                           |
| 0x814         | MDSTAT5  | Module Status Register 5 (Debug Subsystem and Tracers)    |
| 0x818         | MDSTAT6  | Module Status Register 6 (Per-core TETB and System TETB)  |
| 0x81C         | MDSTAT7  | Module Status Register 7 (Packet Accelerator)             |
| 0x820         | MDSTAT8  | Module Status Register 8 (Ethernet SGMIIs)                |
| 0x824         | MDSTAT9  | Module Status Register 9 (Security Accelerator)           |
| 0x828         | MDSTAT10 | Module Status Register 10 (PCle)                          |
| 0x82C         | MDSTAT11 | Module Status Register 11 (SRIO)                          |
| 0x830         | MDSTAT12 | Module Status Register 12 (HyperLink)                     |
| 0x834         | MDSTAT13 | Module Status Register 13 (Reserved)                      |
| 0x838         | MDSTAT14 | Module Status Register 14 (MSMC RAM)                      |
| 0x83C         | MDSTAT15 | Module Status Register 15 (C66x CorePac 0 and Timer 0)    |
| 0x840         | MDSTAT16 | Module Status Register 16 (C66x CorePac 1 and Timer 1)    |
| 0x844         | MDSTAT17 | Reserved                                                  |
| 0x848         | MDSTAT18 | Reserved                                                  |
| 0x84C         | MDSTAT19 | Reserved                                                  |
| 0x850         | MDSTAT20 | Reserved                                                  |
| 0x854         | MDSTAT21 | Reserved                                                  |
| 0x858         | MDSTAT22 | Reserved                                                  |
| 0x85C - 0x9FC | Reserved | Reserved                                                  |
| 0xA00         | MDCTL0   | Module Control Register 0 (Never Gated)                   |
| 0xA04         | MDCTL1   | Module Control Register 1 (SmartReflex)                   |
| 0xA08         | MDCTL2   | Module Control Register 2 (DDR3 EMIF)                     |
| 0xA0C         | MDCTL3   | Module Control Register 3 (EMIF16 and SPI)                |
| 0xA10         | MDCTL4   | Module Control Register 4 (TSIP)                          |
| 0xA14         | MDCTL5   | Module Control Register 5 (Debug Subsystem and Tracers)   |
| 0xA18         | MDCTL6   | Module Control Register 6 (Per-core TETB and System TETB) |
| 0xA1C         | MDCTL7   | Module Control Register 7 (Packet Accelerator)            |
| 0xA20         | MDCTL8   | Module Control Register 8 (Ethernet SGMIIs)               |
| 0xA24         | MDCTL9   | Module Control Register 9 (Security Accelerator)          |
| 0xA28         | MDCTL10  | Module Control Register 10 (PCIe)                         |
| 0xA2C         | MDCTL11  | Module Control Register 11 (SRIO)                         |
| 0xA30         | MDCTL12  | Module Control Register 12 (HyperLink)                    |
| 0xA34         | MDCTL13  | Module Control Register 13 (Reserved)                     |
| 0xA38         | MDCTL14  | Module Control Register 14 (MSMC RAM)                     |
| 0xA3C         | MDCTL15  | Module Control Register 15 (C66x CorePac 0 and Timer 0)   |
| 0xA40         | MDCTL16  | Module Control Register 16 (C66x CorePac 1 and Timer 1)   |
| 0xA44         | MDCTL17  | Reserved                                                  |

#### Table 7-8 PSC Register Memory Map (Part 2 of 3)



| Table 7 0 Tochegister memory map (1 arcs or s) |                  |             |  |  |
|------------------------------------------------|------------------|-------------|--|--|
| Offset                                         | Register         | Description |  |  |
| 0xA48                                          | MDCTL18          | Reserved    |  |  |
| 0xA4C                                          | MDCTL19          | Reserved    |  |  |
| 0xA50                                          | MDCTL20          | Reserved    |  |  |
| 0xA54                                          | MDCTL21          | Reserved    |  |  |
| 0xA58                                          | MDCTL22          | Reserved    |  |  |
| 0xA5C - 0xFFC                                  | Reserved         | Reserved    |  |  |
| End of Table 7-8                               | End of Table 7-8 |             |  |  |

#### Table 7-8PSC Register Memory Map (Part 3 of 3)

1 VCNTLID register is available for debug purposes only.

### 7.5 Reset Controller

The reset controller detects the different type of resets supported on the TMS320C6672 device and manages the distribution of those resets throughout the device.

The device has several types of resets:

- Power-on reset
- Hard reset
- Soft reset
- CPU local reset

Table 7-9 explains further the types of reset, the reset initiator, and the effects of each reset on the device. For more information on the effects of each reset on the PLL controllers and their clocks, see Section "Reset Electrical Data / Timing" on page 135

| Reset Type                  | Initiator                                                                        | Effect on Device When Reset Occurs                                                                                                                                                                                                                                                                                                                                                                                  | <b>RESETSTAT</b> Pin Status      |
|-----------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| POR (Power On Reset)        | POR pin active low<br>RESETFULL pin active low                                   | Total reset of the chip. Everything on the device is reset to its default<br>state in response to this. Activates the POR signal on chip, which is used<br>to reset test/emu logic. Boot configurations are latched. ROM boot<br>process is initiated.                                                                                                                                                              | Toggles RESETSTAT pin            |
| Hard Reset                  | RESET pin active low<br>Emulation<br>PLLCTL register (RSCTRL)<br>Watchdog timers | Resets everything except for test/emu logic and reset isolation<br>modules. Emulator and reset Isolation modules stay alive during this<br>reset. This reset is also different from POR in that the PLLCTL assumes<br>power and clocks are stable when device reset is asserted. Boot<br>configurations are not latched. ROM boot process is initiated.                                                             | Toggles RESETSTAT pin            |
| Soft Reset                  | RESET pin active low<br>PLLCTL register (RSCTRL)<br>Watchdog timers              | Software can program these initiators to be hard or soft. Hard reset is<br>the default, but can be programmed to be soft reset. Soft reset will<br>behave like hard reset except that EMIF16 MMRs, DDR3 EMIF MMRs, the<br>sticky bits in PCIe MMRs, and external memory contents are retained.<br>Boot configurations are not latched. ROM boot process is initiated.                                               | Toggles RESETSTAT pin            |
| C66x CorePac<br>local reset | Software (through<br>LPSC MMR)<br>Watchdog timers<br>LRESET pin                  | MMR bit in LPSC controls C66x CorePac local reset. Used by watchdog timers (in the event of a timeout) to reset C66x CorePac. Can also be initiated by LRESET device pin. C66x CorePac memory system and slave DMA port are still alive when C66x CorePac is in local reset. Provides a local reset of the C66x CorePac, without destroying clock alignment or memory contents. Does not initiate ROM boot process. | Does not toggle<br>RESETSTAT pin |

#### Table 7-9 Reset Types



#### 7.5.1 Power-on Reset

Power-on reset is used to reset the entire device, including the test and emulation logic.

Power-on reset is initiated by the following

- 1. POR pin
- 2. RESETFULL pin

During power-up, the POR pin must be asserted (driven low) until the power supplies have reached their normal operating conditions. A RESETFULL pin is also provided to allow the on-board host to reset the entire device including the reset isolated logic. The assumption is that, device is already powered up and hence unlike POR, RESETFULL pin will be driven by the on-board host control other than the power good circuitry. For power-on reset, the Main PLL Controller comes up in bypass mode and the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL controller.

The following sequence must be followed during a power-on reset:

- 1. Wait for all power supplies to reach normal operating conditions while keeping the POR pin asserted (driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After the POR pin is de-asserted (driven high), all Z group pins, low group pins, and high group pins are set to their reset state and will remain at their reset state until otherwise configured by their respective peripheral. All peripherals that are power managed, are disabled after a Power-on Reset and must be enabled through the Device State Control registers (for more details, see Section Table 3-2 "Device State Control Registers" on page 74).
- 2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset synchronously. All logic is now reset and RESETSTAT will be driven low indicating that the device is in reset.
- 3. POR must be held active until all supplies on the board are stable then for at least an additional time for the Chip level PLLs to lock.
- 4. The POR pin can now be de-asserted. Reset sampled pin values are latched at this point. The Chip level PLLs is taken out of reset and begins its locking sequence, and all power-on device initialization also begins.
- 5. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time, DDR3 PLL has already completed its locking sequence and is outputting a valid clock. The system clocks of both PLL controllers are allowed to finish their current cycles and then paused for 10 cycles of their respective system reference clocks. After the pause, the system clocks are restarted at their default divide by settings.
- 6. The device is now out of reset and device execution begins as dictated by the selected boot mode.

**Note**—To most of the device, reset is de-asserted only when the  $\overrightarrow{POR}$  and  $\overrightarrow{RESET}$  pins are both de-asserted (driven high). Therefore, in the sequence described above, if the  $\overrightarrow{RESET}$  pin is held low past the low period of the POR pin, most of the device will remain in reset. The  $\overrightarrow{RESET}$  pin should not be tied together with the POR pin.



### 7.5.2 Hard Reset

A hard reset will reset everything on the device except the PLLs, test, emulation logic, and reset isolation modules. POR should also remain de-asserted during this time.

Hard reset is initiated by the following

- RESET pin
- RSCTRL register in PLLCTL
- Watchdog timer
- Emulation

All the above initiators by default are configured to act as hard reset. Except emulation, all the other 3 initiators can be configured as soft resets in the RSCFG register in PLLCTL.

The following sequence must be followed during a hard reset:

- 1. The RESET pin is pulled active low for a minimum of 24 CLKIN1 cycles. During this time the RESET signal is able to propagate to all modules (except those specifically mentioned above). All I/O are Hi-Z for modules affected by RESET, to prevent off-chip contention during the warm reset.
- 2. Once all logic is reset, **RESETSTAT** is driven active to denote that the device is in reset.
- 3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that configuration pins are not re-latched and clocking is unaffected within the device.
- 4. After device initialization is complete, the **RESETSTAT** pin is de-asserted (driven high).

**Note**—The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise, if POR is activated (brought low), the minimum POR pulse width must be met. The RESET pin should not be tied together with the POR pin.



### 7.5.3 Soft Reset

A soft reset will behave like a hard reset except that EMIF16 MMRs, DDR3 EMIF MMRs and the PCIe MMRs sticky bits, and external memory contents are retained. POR should also remain de-asserted during this time.

Soft reset is initiated by the following

- RESET pin
- RSCTRL register in PLLCTL
- Watchdog timer

All the above initiators by default are configured to act as hard reset. Except emulation, all the other 3 initiators can be configured as soft resets in the RSCFG register in PLLCTL.

In the case of a soft reset, the clock logic or the power control logic of the peripherals are not affected, and, therefore, the enabled/disabled state of the peripherals is not affected. On a soft reset, the DDR3 memory controller registers are *not* reset. In addition, the DDR3 SDRAM memory content is retained if the user places the DDR3 SDRAM in self-refresh mode before invoking the soft reset.

During a soft reset, the following happens:

- 1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset is allowed to propagate through the system. Internal system clocks are not affected. PLLs also remain locked.
- 2. After device initialization is complete, the **RESETSTAT** pin is deasserted (driven high). In addition, the PLL controllers pause their system clocks for about 8 cycles.

At this point:

- > The state of the peripherals before the soft reset is not changed.
- > The I/O pins are controlled as dictated by the DEVSTAT register.
- > The DDR3 MMRs and the PCIe MMRs sticky bits retain their previous values. Only the DDR3 Memory Controller and PCIe state machines are reset by the soft reset.
- > The PLL controllers are operating in the mode prior to soft reset. System clocks are unaffected.

The boot sequence is started after the system clocks are restarted. Because the configuration pins are not latched with a System Reset, the previous values, as shown in the DEVSTAT register, are used to select the boot mode.



### 7.5.4 Local Reset

The local reset can be used to reset a particular CorePac without resetting any other chip components.

Local reset is initiated by the following (for more details see the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72:

- IRESET pin
- Watchdog timer should cause one of the below based on the setting of the CORESEL[2:0] and RSTCFG register in the PLL controller. See "Reset Configuration Register (RSTCFG)" on page 145 and "CIC Registers" on page 175:
  - Local reset
  - NMI
  - NMI followed by a time delay and then a local reset for the CorePac selected
  - Hard Reset by requesting reset via PLLCTL
- LPSC MMRs (memory-mapped registers)

### 7.5.5 Reset Priority

If any of the above reset sources occur simultaneously, the PLLCTL processes only the highest priority reset request. The reset request priorities are as follows (high to low):

- Power-on reset
- Hard/soft reset

### 7.5.6 Reset Controller Register

The reset controller register are part of the PLLCTL MMRs. All C6672 device-specific MMRs are covered in Section 7.6.3 "Main PLL Control Register" on page 147. For more details on these registers and how to program them, see the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.



#### 7.5.7 Reset Electrical Data / Timing

## Table 7-10 Reset Timing Requirements<sup>(1)</sup>

(see Figure 7-6 and Figure 7-7)

| No. |                  |                                         |      |    |  |  |
|-----|------------------|-----------------------------------------|------|----|--|--|
|     |                  | <b>RESETFULL</b> Pin Reset              |      |    |  |  |
| 1   | tw(RESETFULL)    | Pulse width - Pulse width RESETFULL low | 500C | ns |  |  |
|     | Soft/Hard-Reset  |                                         |      |    |  |  |
| 2   | tw(RESET)        | Pulse width - Pulse width RESET low     | 500C | ns |  |  |
| End | nd of Table 7-10 |                                         |      |    |  |  |

1 C = 1/SYSCLK1 frequency in ns.

# Table 7-11 Reset Switching Characteristics Over Recommended Operating Conditions <sup>(1)</sup> (see Figure 7-6 and Figure 7-7)

| No. |                           | Min Ma:                                          | d Unit |      |  |  |
|-----|---------------------------|--------------------------------------------------|--------|------|--|--|
|     |                           | <b>RESETFULL</b> Pin Reset                       |        |      |  |  |
| 3   | td(RESETFULLH-RESETSTATH) | Delay time - RESETSTAT high after RESETFULL high | 50000  | C ns |  |  |
|     |                           | Soft/Hard Reset                                  |        |      |  |  |
| 4   | td(RESETH-RESETSTATH)     | Delay time - RESETSTAT high after RESET high     | 50000  | C ns |  |  |
| End | End of Table 7-11         |                                                  |        |      |  |  |

1 C = 1/SYSCLK1 frequency in ns.

#### Figure 7-6 RESETFULL Reset Timing





## Table 7-12 Boot Configuration Timing Requirements <sup>(1)</sup>

(See Figure 7-8)

| No.    |                      |                                                   | Min | Max | Unit |  |
|--------|----------------------|---------------------------------------------------|-----|-----|------|--|
| 1      | tsu(GPIOn-RESETFULL) | Setup time - GPIO valid before RESETFULL asserted | 12C |     | ns   |  |
| 2      | th(RESETFULL-GPIOn)  | Hold time - GPIO valid after RESETFULL asserted   | 12C |     | ns   |  |
| End of | End of Table 7-12    |                                                   |     |     |      |  |

1 C = 1/SYSCLK1 frequency in ns.

#### Figure 7-8Boot Configuration Timing





### 7.6 Main PLL and PLL Controller

This section provides a description of the Main PLL and the PLL Controller. For details on the operation of the PLL Controller module, see the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

The Main PLL is controlled by the standard PLL Controller. The PLL controller manages the clock ratios, alignment, and gating for the system clocks to the device. Figure 7-9 shows a block diagram of the main PLL and the PLL Controller.



#### Figure 7-9 Main PLL and PLL Controller



**Note**—The Main PLL Controller registers can be accessed by any master in the device. The PLLM[5:0] bits of the multiplier are controlled by the PLLM register inside the PLL controller and PLLM[12:6] bits are controlled by the chip-level MAINPLLCTL0 register. The Output Divide and Bypass logic of the PLL are controlled by fields in the SECCTL register in the PLL controller. Only PLLDIV2, PLLDIV5, and PLLDIV8 are programmable on the C6672 device. See the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for more details on how to program the PLL controller.

The multiplication and division ratios within the PLL and the post-division for each of the chip-level clocks are determined by a combination of this PLL and the PLL Controller. The PLL controller also controls reset propagation through the chip, clock alignment, and test points. The PLL controller monitors the PLL status and provides an output signal indicating when the PLL is locked.

Main PLL power is supplied externally via the Main PLL power-supply pin (AVDDA1). An external EMI filter circuit must be added to all PLL supplies. See the *Hardware Design Guide for KeyStone I Devices* in "Related Documentation from Texas Instruments" on page 72 for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter).

The minimum SYSCLK rise and fall times should also be observed. For the input clock timing requirements, see Section 7.6.5 "Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing".

**Note**—The PLL controller module as described in the see the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 includes a superset of features, some of which are not supported on the TMS320C6672 device. The following sections describe the registers that are supported; it should be assumed that any registers not included in these sections is not supported by the device. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits.

### 7.6.1 Main PLL Controller Device-Specific Information

#### 7.6.1.1 Internal Clocks and Maximum Operating Frequencies

The Main PLL, used to drive the CorePacs, the switch fabric, and a majority of the peripheral clocks (all but the DDR3 and the network coprocessor (PASS)) requires a PLL controller to manage the various clock divisions, gating, and synchronization. The Main PLL Controller has several SYSCLK outputs that are listed below, along with the clock description. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL. Note that dividers are not programmable unless explicitly mentioned in the description below.

- **SYSCLK1:** Full-rate clock for the CorePacs.
- **SYSCLK2:** 1/x-rate clock for CorePac (emulation). Default rate for this is 1/3. This is programmable from /1 to /32, where this clock does not violate the max of 350 MHz. The SYSCLK2 can be turned off by software.
- **SYSCLK3:** 1/2-rate clock used to clock the MSMC, HyperLink, CPU/2 TeraNet, DDR EMIF and CPU/2 EDMA.
- SYSCLK4: 1/3-rate clock for the switch fabrics and fast peripherals. The Debug\_SS and ETBs use this as well.
- **SYSCLK5:** 1/y-rate clock for system trace module, only. Default rate for this is 1/5. It is configurable and the max configurable clock is 210 MHz and min configuration clock is 32 MHz. The SYSCLK5 can be turned off by software.



- **SYSCLK6:** 1/64-rate clock. 1/64 rate clock (emif\_ptv) used to clock the PVT compensated buffers for DDR3 EMIF.
- **SYSCLK7:** 1/6-rate clock for slow peripherals (GPIO, UART, Timer, I<sup>2</sup>C, SPI, EMIF16, etc.) and sources the SYSCLKOUT output pin.
- **SYSCLK8:** 1/z-rate clock. This clock is used as slow\_sysclk in the system. Default for this will be 1/64. This is programmable from /24 to /80.
- **SYSCLK9:** 1/12-rate clock for SmartReflex.
- **SYSCLK10:** 1/3-rate clock for SRIO only.
- **SYSCLK11:** 1/6-rate clock for PSC only.

Only SYSCLK2, SYSCLK5, and SYSCLK8 are programmable on the TMS320C6672 device.

**Note**—In case any of the other programmable SYSCLKs are set slower than 1/64 rate, then SYSCLK8 (SLOW\_SYSCLK) must be programmed to either match, or be slower than, the slowest SYSCLK in the system.

### 7.6.1.2 Main PLL Controller Operating Modes

The Main PLL Controller has two modes of operation: bypass mode and PLL mode. The mode of operation is determined by BYPASS bit of the PLL Secondary control register (SECCTL). In PLL mode, SYSCLK1 is generated from the PLL output using the values set in PLLM and PLLD bit fields in the MAINPLLCTL0 register. In bypass mode, PLL input is fed directly out as SYSCLK1.

All hosts must hold off accesses to the DSP while the frequency of its internal clocks is changing. A mechanism must be in place such that the DSP notifies the host when the PLL configuration has completed.

#### 7.6.1.3 Main PLL Stabilization, Lock, and Reset Times

The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to become stable after device powerup. The PLL should not be operated until this stabilization time has elapsed.

The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the Main PLL reset time value, see Table 7-13.

The PLL lock time is the amount of time needed from when the PLL is taken out of reset (PLLRST = 1) to when to when the PLL Controller can be switched to PLL mode. The Main PLL lock time is given in Table 7-13.

#### Table 7-13 Main PLL Stabilization, Lock, and Reset Times

|                        | Min  | Тур | Мах                                           | Unit |
|------------------------|------|-----|-----------------------------------------------|------|
| PLL stabilization time | 100  |     |                                               | μs   |
| PLL lock time          |      |     | 500×(PLLD <sup>(1)</sup> +1)×C <sup>(2)</sup> |      |
| PLL reset time         | 1000 |     |                                               | ns   |
| End of Table 7-13      |      |     |                                               |      |

1 PLLD is the value in PLLD bit fields of MAINPLLCTL0 register

2 C = SYSCLK1 cycle time in ns.



SPRS708E—March 2014

### 7.6.2 PLL Controller Memory Map

The memory map of the PLL Controller is shown in Table 7-14. TMS320C6672-specific PLL Controller register definitions can be found in the sections following Table 7-14. For other registers in the table, see the Phase Locked Loop (PLL) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.

Note-Only registers documented here are accessible on the TMS320C6672. Other addresses in the PLL Controller memory map including the reserved registers should not be modified. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. It is recommended to use read-modify-write sequence to make any changes to the valid bits in the register.

| Hex Address Range     | Field   | Register Name                                      |  |
|-----------------------|---------|----------------------------------------------------|--|
| 0231 0000 - 0231 00E3 | -       | Reserved                                           |  |
| 0231 00E4             | RSTYPE  | Reset Type Status Register (Reset Controller)      |  |
| 0231 00E8             | RSTCTRL | Software Reset Control Register (Reset Controller) |  |
| 0231 00EC             | RSTCFG  | Reset Configuration Register (Reset Controller)    |  |
| 0231 00F0             | RSISO   | Reset Isolation Register (Reset Controller)        |  |
| 0231 00F0 - 0231 00FF | -       | Reserved                                           |  |
| 0231 0100             | PLLCTL  | PLL Control Register                               |  |
| 0231 0104             | -       | Reserved                                           |  |
| 0231 0108             | SECCTL  | PLL Secondary Control Register                     |  |
| 0231 010C             | -       | Reserved                                           |  |
| 0231 0110             | PLLM    | PLL Multiplier Control Register                    |  |
| 0231 0114             | -       | Reserved                                           |  |
| 0231 0118             | PLLDIV1 | Reserved                                           |  |
| 0231 011C             | PLLDIV2 | PLL Controller Divider 2 Register                  |  |
| 0231 0120             | PLLDIV3 | Reserved                                           |  |
| 0231 0124             | -       | Reserved                                           |  |
| 0231 0128             | -       | Reserved                                           |  |
| 0231 012C - 0231 0134 | -       | Reserved                                           |  |
| 0231 0138             | PLLCMD  | PLL Controller Command Register                    |  |
| 0231 013C             | PLLSTAT | PLL Controller Status Register                     |  |
| 0231 0140             | ALNCTL  | PLL Controller Clock Align Control Register        |  |
| 0231 0144             | DCHANGE | PLLDIV Ratio Change Status Register                |  |
| 0231 0148             | CKEN    | Reserved                                           |  |
| 0231 014C             | CKSTAT  | Reserved                                           |  |
| 0231 0150             | SYSTAT  | SYSCLK Status Register                             |  |
| 0231 0154 - 0231 015C | -       | Reserved                                           |  |
| 0231 0160             | PLLDIV4 | Reserved                                           |  |
| 0231 0164             | PLLDIV5 | PLL Controller Divider 5 Register                  |  |
| 0231 0168             | PLLDIV6 | Reserved                                           |  |
| 0231 016C             | PLLDIV7 | Reserved                                           |  |
| 0231 0170             | PLLDIV8 | PLL Controller Divider 8 Register                  |  |

| Table 7-14 | PLL Controller Registers (Including Reset Controller) (Part 1 of 2)  |
|------------|----------------------------------------------------------------------|
|            | r LL Controller Registers (including Reset Controller) (rait i or 2) |

| · · · · · · · · · · · · · · · · · · · |                    |               |  |  |  |  |  |
|---------------------------------------|--------------------|---------------|--|--|--|--|--|
| Hex Address Range                     | Field              | Register Name |  |  |  |  |  |
| 0231 0174 - 0231 0193                 | PLLDIV9 - PLLDIV16 | Reserved      |  |  |  |  |  |
| 0231 0194 - 0231 01FF                 | -                  | Reserved      |  |  |  |  |  |
| End of Table 7-14                     |                    |               |  |  |  |  |  |

#### Table 7-14 PLL Controller Registers (Including Reset Controller) (Part 2 of 2)

#### 7.6.2.1 PLL Secondary Control Register (SECCTL)

The PLL Secondary Control Register contains extra fields to control the Main PLL and is shown in Figure 7-10 and described in Table 7-15.

#### Figure 7-10 PLL Secondary Control Register (SECCTL))

| 31          | 24 | 23     | 22   | 19        | 18        | 0                  |
|-------------|----|--------|------|-----------|-----------|--------------------|
| Reserved    |    | BYPASS | OUTP | UT DIVIDE |           | Reserved           |
| R-0000 0000 |    | RW-0   | RV   | V-0001    | RW-001 00 | 000 0000 0000 0000 |

Legend: R/W = Read/Write; R = Read only; -n = value after reset

#### Table 7-15 PLL Secondary Control Register (SECCTL) Field Descriptions

| Bit      | Field            | Description                                                                                                                           |  |  |  |
|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31-24    | Reserved         | Reserved                                                                                                                              |  |  |  |
| 23       | BYPASS           | Main PLL Bypass Enable<br>0 = Main PLL Bypass disabled<br>1 = Main PLL Bypass enabled                                                 |  |  |  |
| 22-19    | OUTPUT DIVIDE    | Output Divider ratio bits.<br>$0h = \div 1$ . Divide frequency by 1.<br>$1h = \div 2$ . Divide frequency by 2.<br>2h - Fh = Reserved. |  |  |  |
| 18-0     | Reserved         | Reserved                                                                                                                              |  |  |  |
| End of T | nd of Table 7-15 |                                                                                                                                       |  |  |  |



SPRS708E—March 2014

### 7.6.2.2 PLL Controller Divider Register (PLLDIV2, PLLDIV5, PLLDIV8)

The PLL controller divider registers (PLLDIV2, PLLDIV5, and PLLDIV8) are shown in Figure 7-11 and described in Table 7-16. The default values of the RATIO field on a reset for PLLDIV2, PLLDIV5, and PLLDIV8 are different and mentioned in the footnote of Figure 7-11.

#### Figure 7-11 PLL Controller Divider Register (PLLDIVn)

| 31       | 16 15                        | 14 8     | 7 0                  |
|----------|------------------------------|----------|----------------------|
| Reserved | D <i>n</i> <sup>(1)</sup> EN | Reserved | RATIO                |
|          | R/W-1                        | R-0      | R/W-n <sup>(2)</sup> |

Legend: R/W = Read/Write; R = Read only; -n = value after reset

1 D2EN for PLLDIV2; D5EN for PLLDIV5; D8EN for PLLDIV8

2 n=02h for PLLDIV2; n=04h for PLLDIV5; n=3Fh for PLLDIV8

| Table 7-16 | PLL Controller Divider Register (PLLDIVn) Field Descriptions |
|------------|--------------------------------------------------------------|
|            |                                                              |

| Bit      | Field     | Description                                                                                                                                                                                                                                                                                                      |  |  |  |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31-16    | Reserved  | Reserved.                                                                                                                                                                                                                                                                                                        |  |  |  |
| 15       | DnEN      | vider Dn enable bit. (see footnote of Figure 7-11)<br>= Divider n is disabled.<br>= No clock output. Divider n is enabled.                                                                                                                                                                                       |  |  |  |
| 14-8     | Reserved  | Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.                                                                                                                                                                                                            |  |  |  |
| 7-0      | RATIO     | Divider ratio bits. (see footnote of Figure 7-11)<br>$0h = \div 1$ . Divide frequency by 1.<br>$1h = \div 2$ . Divide frequency by 2.<br>$2h = \div 3$ . Divide frequency by 3.<br>$3h = \div 4$ . Divide frequency by 4.<br>$4h - 4Fh = \div 5$ to $\div 80$ . Divide frequency by 5 to divide frequency by 80. |  |  |  |
| End of T | able 7-16 |                                                                                                                                                                                                                                                                                                                  |  |  |  |

#### 7.6.2.3 PLL Controller Clock Align Control Register (ALNCTL)

The PLL Controller clock align control register (ALNCTL) is shown in Figure 7-12 and described in Table 7-17.

#### PLL Controller Clock Align Control Register (ALNCTL) Figure 7-12

| 31 8     | 7     | 6      | 5  | 4     | 3    | 2    | 1     | 0        |
|----------|-------|--------|----|-------|------|------|-------|----------|
| Reserved | ALN8  | Reserv | ed | ALN5  | Rese | rved | ALN2  | Reserved |
| R-0      | R/W-1 | R-0    |    | R/W-1 | R-   | 0    | R/W-1 | R-0      |

Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value



| Bit               | Field    | Description                                                                                                                                                                                                                          |  |  |  |  |
|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31-8              |          |                                                                                                                                                                                                                                      |  |  |  |  |
| 6-5               | Deserved | Descurred The second distribution is a basis of the O.A. where without to this Guiddle survey offs at                                                                                                                                |  |  |  |  |
| 3-2               | Reserved | Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.                                                                                                                                |  |  |  |  |
| 0                 |          |                                                                                                                                                                                                                                      |  |  |  |  |
| 7                 | ALN8     | SYSCLK <i>n</i> alignment. Do not change the default values of these fields.                                                                                                                                                         |  |  |  |  |
| 4                 | ALN5     | 0 = Do not align SYSCLK <i>n</i> to other SYSCLKs during GO operation. If SYS <i>n</i> in DCHANGE is set, SYSCLK <i>n</i> switches to the new ratio immediately after the GOSET bit in PLLCMD is set.                                |  |  |  |  |
| 1                 | ALN2     | 1 = Align SYSCLK <i>n</i> to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set and SYS <i>n</i> in DCHANGE is 1.<br>The SYSCLK <i>n</i> rate is set to the ratio programmed in the RATIO bit in PLLDIV <i>n</i> . |  |  |  |  |
| End of Table 7-17 |          |                                                                                                                                                                                                                                      |  |  |  |  |

 Table 7-17
 PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions

#### 7.6.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE)

Whenever a different ratio is written to the PLLDIV*n* registers, the PLLCTL flags the change in the DCHANGE status register. During the GO operation, the PLL Controller will change only the divide ratio of the SYSCLKs with the bit set in DCHANGE. Note that the ALNCTL register determines if that clock also needs to be aligned to other clocks. The PLLDIV divider ratio change status register is shown in Figure 7-13 and described in Table 7-18.

#### Figure 7-13 PLLDIV Divider Ratio Change Status Register (DCHANGE)

| 31       | 8 | 7     | 6    | 5    | 4     | 3    | 2    | 1     | 0        |
|----------|---|-------|------|------|-------|------|------|-------|----------|
| Reserved |   | SYS8  | Rese | rved | SYS5  | Rese | rved | SYS2  | Reserved |
| R-0      |   | R/W-0 | R-   | 0    | R/W-0 | R    | -0   | R/W-0 | R-0      |

Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value

| Table 7-18 Pl | LLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions |
|---------------|-------------------------------------------------------------------------|
|---------------|-------------------------------------------------------------------------|

| Bit    | Field      | Description                                                                                                   |
|--------|------------|---------------------------------------------------------------------------------------------------------------|
| 31-8   |            |                                                                                                               |
| 6-5    | December   | Described The reserved his leasting is always used as 0. A value switten to this field has as affect          |
| 3-2    | Reserved   | Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.         |
| 0      |            |                                                                                                               |
| 7      | SYS8       | Identifies when the SYSCLKn divide ratio has been modified.                                                   |
| 4      | SYS5       | 0 = SYSCLK <i>n</i> ratio has not been modified. When GOSET is set, SYSCLK <i>n</i> will not be affected.     |
| 1      | SYS2       | 1 = SYSCLK <i>n</i> ratio has been modified. When GOSET is set, SYSCLK <i>n</i> will change to the new ratio. |
| End of | Table 7-18 | •                                                                                                             |

#### 7.6.2.5 SYSCLK Status Register (SYSTAT)

The SYSCLK status register (SYSTAT) shows the status of SYSCLK[11:1]. SYSTAT is shown in Figure 7-14 and described in Table 7-19.

| Figure 7-14 | SYSCLK Status Register (SYSTAT) |
|-------------|---------------------------------|
|-------------|---------------------------------|

| 31    | 11  | 10      | 9       | 8      | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|-------|-----|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Reser | ved | SYS11ON | SYS10ON | SYS9ON | SYS8ON | SYS7ON | SYS6ON | SYS5ON | SYS4ON | SYS3ON | SYS2ON | SYS1ON |
| R-ı   | า   | R-1     | R-1     | R-1    | R-1    | R-1    | R-1    | R-1    | R-1    | R-1    | R-1    | R-1    |

Legend: R/W = Read/Write; R = Read only; -n = value after reset



| Bit       | Field                    | Description                                                                                           |  |  |  |  |  |
|-----------|--------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 31-11     | Reserved                 | Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. |  |  |  |  |  |
| 10-0      | SYS[N <sup>(1)</sup> ]ON | SYSCLK[N] on status.<br>0 = SYSCLK[N] is gated.<br>1 = SYSCLK[N] is on.                               |  |  |  |  |  |
| End of Ta | End of Table 7-19        |                                                                                                       |  |  |  |  |  |

#### Table 7-19 SYSCLK Status Register (SYSTAT) Field Descriptions

1 Where N = 1, 2, 3,...N (Not all these output clocks may be used on a specific device. For more information, see the device-specific data manual)

#### 7.6.2.6 Reset Type Status Register (RSTYPE)

The reset type status (RSTYPE) register latches the cause of the last reset. If multiple reset sources occur simultaneously, this register latches the highest priority reset source. The Reset Type Status Register is shown in Figure 7-15 and described in Table 7-20.

#### Figure 7-15 Reset Type Status Register (RSTYPE)

| 31     | 29  | 28      | 27 | 12      | 11 | 8      | 7   | 3      | 2          | 1     | 0   |
|--------|-----|---------|----|---------|----|--------|-----|--------|------------|-------|-----|
| Reserv | /ed | EMU-RST | Re | eserved | WD | RST[N] | Res | served | PLLCTRLRST | RESET | POR |
| R-0    | )   | R-0     |    | R-0     |    | R-0    |     | R-0    | R-0        | R-0   | R-0 |

Legend: R = Read only; -n = value after reset

#### Table 7-20 Reset Type Status Register (RSTYPE) Field Descriptions

| Bit                | Field                                | Description                                                                                                               |  |  |  |  |
|--------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31-29              | Reserved                             | Reserved. Read only. Always reads as 0. Writes have no effect.                                                            |  |  |  |  |
| 28                 | EMU-RST                              | Reset initiated by emulation.<br>0 = Not the last reset to occur.<br>1 = The last reset to occur.                         |  |  |  |  |
| 27-12              | Reserved                             | Reserved. Read only. Always reads as 0. Writes have no effect.                                                            |  |  |  |  |
| 11<br>10<br>9<br>8 | WDRST3<br>WDRST2<br>WDRST1<br>WDRST0 | Reset initiated by watchdog timer[N].<br>0 = Not the last reset to occur.<br>1 = The last reset to occur.                 |  |  |  |  |
| 7-3                | Reserved                             | Reserved. Read only. Always reads as 0. Writes have no effect.                                                            |  |  |  |  |
| 2                  | PLLCTLRST                            | Reset initiated by PLLCTL.<br>0 = Not the last reset to occur.<br>1 = The last reset to occur.                            |  |  |  |  |
| 1                  | RESET                                | RESET reset.         0 = RESET was not the last reset to occur.         1 = RESET was the last reset to occur.            |  |  |  |  |
| 0                  | POR                                  | Power-on reset.<br>0 = Power-on reset was not the last reset to occur.<br>1 = Power-on reset was the last reset to occur. |  |  |  |  |
| End of             | End of Table 7-20                    |                                                                                                                           |  |  |  |  |


#### 7.6.2.7 Reset Control Register (RSTCTRL)

This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The key value is 0x5A69. A valid key will be stored as 0x000C, any other key value is invalid. When the RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key. The Software Reset Control Register (RSTCTRL) is shown in Figure 7-16 and described in Table 7-21.

#### Figure 7-16 Reset Control Register (RSTCTRL)

| 31       | 17 | 16                    | 15 | 0          |
|----------|----|-----------------------|----|------------|
| Reserved |    | SWRST                 |    | KEY        |
| R-0x0000 |    | R/W-0x <sup>(1)</sup> |    | R/W-0x0003 |

Legend: R = Read only; -n = value after reset;

1 Writes are conditional based on valid key.

| Table 7-21 Reset Control Register (RSTCTRL) Field D | Descriptions |
|-----------------------------------------------------|--------------|
|-----------------------------------------------------|--------------|

| Bit    | Field             | Description                                      |  |  |  |  |
|--------|-------------------|--------------------------------------------------|--|--|--|--|
| 31-17  | Reserved          | Reserved.                                        |  |  |  |  |
| 16     | SWRST             | Software reset<br>0 = Reset<br>1 = Not reset     |  |  |  |  |
| 15-0   | KEY               | Key used to enable writes to RSTCTRL and RSTCFG. |  |  |  |  |
| End of | End of Table 7-21 |                                                  |  |  |  |  |

#### 7.6.2.8 Reset Configuration Register (RSTCFG)

This register is used to configure the type of reset initiated by  $\overline{\text{RESET}}$ , watchdog timer and the PLL Controller's RSTCTRL Register; i.e., a hard reset or a soft reset. By default, these resets will be hard resets. The Reset Configuration Register (RSTCFG) is shown in Figure 7-17 and described in Table 7-22.

#### Figure 7-17 Reset Configuration Register (RSTCFG)

| 31       | 14 | 13                   | 12                 | 11      | 4  | 3   | 0                      |
|----------|----|----------------------|--------------------|---------|----|-----|------------------------|
| Reserved |    | PLLCTLRSTTYPE        | RESETTYPE          | Reserve | ed | WDT | YPE[N <sup>(1)</sup> ] |
| R-0      |    | R/W-0 <sup>(2)</sup> | R/W-0 <sup>2</sup> | R-0     |    | R/  | /W-0 <sup>2</sup>      |

Legend: R = Read only; R/W = Read/Write; -n = value after reset

1 Where N = 1, 2, 3,...N (Not all these output may be used on a specific device. For more information, see the device-specific data manual)

2 Writes are conditional based on valid key. For details, see Section 7.6.2.7 "Reset Control Register (RSTCTRL)".

#### Table 7-22 Reset Configuration Register (RSTCFG) Field Descriptions (Part 1 of 2)

| Bit   | Field         | Description                                                                                             |
|-------|---------------|---------------------------------------------------------------------------------------------------------|
| 31-14 | Reserved      | Reserved.                                                                                               |
| 13    | PLLCTLRSTTYPE | PLL Controller initiates a software-driven reset of type:<br>0 = Hard reset (default)<br>1 = Soft reset |
| 12    | RESETTYPE     | RESET initiates a reset of type:         0 = Hard reset (default)         1 = Soft reset                |

SPRS708E—March 2014



| Bit         | Field                         | Description                                                                                 |  |  |  |  |
|-------------|-------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| 11-4        | Reserved                      | Reserved.                                                                                   |  |  |  |  |
| 3<br>2<br>1 | WDTYPE3<br>WDTYPE2<br>WDTYPE1 | Watchdog timer [N] initiates a reset of type:<br>0 = Hard reset (default)<br>1 = Soft reset |  |  |  |  |
| -           | 0 WDTYPE0 End of Table 7-22   |                                                                                             |  |  |  |  |

#### Table 7-22 Reset Configuration Register (RSTCFG) Field Descriptions (Part 2 of 2)

# 7.6.2.9 Reset Isolation Register (RSISO)

This register is used to select the module clocks that must maintain their clocking without pausing through non power-on reset. Setting any of these bits effectively blocks reset to all PLLCTL registers in order to maintain current values of PLL multiplier, divide ratios and other settings. Along with setting module specific bit in RSISO, the corresponding MDCTLx[12] bit also must be set in PSC to reset isolate a particular module. For more information on MDCTLx register see the *Power Sleep Controller (PSC) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72. The Reset Isolation Register (RSTCTRL) is shown in Figure 7-18 and described in Table 7-23.

#### Figure 7-18 Reset Isolation Register (RSISO)

| 31 10    | 9       | 8     | 7 |          | 0 |
|----------|---------|-------|---|----------|---|
| Reserved | SRIOISO | SRISO |   | Reserved |   |
| R-0      | R/W-0   | R/W-0 |   | R-0      |   |

Legend: R = Read only; R/W = Read/Write; -n = value after reset

#### Table 7-23 Reset Isolation Register (RSISO) Field Descriptions

| Bit    | Field      | Description                                                         |
|--------|------------|---------------------------------------------------------------------|
| 31-10  | Reserved   | Reserved.                                                           |
| 9      | SRIOISO    | Isolate SRIO module<br>0 = Not reset isolated<br>1 = Reset Isolated |
| 8      | SRISO      | Isolate SmartReflex<br>0 = Not reset isolated<br>1 = Reset Isolated |
| 7-0    | Reserved   | Reserved.                                                           |
| End of | Table 7-23 |                                                                     |

**Note**—The boot ROM code will enable the reset isolation for both SRIO and SmartReflex modules during boot with the Reset Isolation Register. It is up to the user application to disable.

### 7.6.3 Main PLL Control Register

The Main PLL uses two chip-level registers (MAINPLLCTL0 and MAINPLLCTL1) along with the PLL Controller for its configuration. These MMRs exist inside the Bootcfg space. To write to these registers, software should go through an un-locking sequence using KICK0/KICK1 registers. For valid configurable values into the MAINPLLCTL0 and MAINPLLCTL1 registers see Section 2.5.4 "PLL Boot Configuration Settings" on page 38. See section 3.3.4 "Kicker Mechanism Register (KICK0 and KICK1)" on page 80 for the address location of the registers and locking and unlocking sequences for accessing the registers. The registers are reset on POR only.

#### Figure 7-19 Main PLL Control Register 0 (MAINPLLCTL0)

| _ | 31 |              | 24 | 23 |           | 19 | 18 |            | 12 | 11    | 6     | 5    | 0     |
|---|----|--------------|----|----|-----------|----|----|------------|----|-------|-------|------|-------|
|   |    | BWADJ[7:0]   |    |    | Reserved  |    |    | PLLM[12:6] |    | Rese  | rved  | PL   | LD    |
| _ |    | RW-0000 0101 |    |    | RW-0000 0 |    |    | RW-0000000 |    | RW-00 | 00000 | RW-0 | 00000 |

Legend: RW = Read/Write; -n = value after reset

#### Table 7-24 Main PLL Control Register 0 (MAINPLLCTL0) Field Descriptions

| Bit    | Field      | Description                                                                                                                                                                                                                 |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-24  | BWADJ[7:0] | BWADJ[11:8] and BWADJ[7:0] are located in MAINPLLCTL0 and MAINPLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |
| 23-19  | Reserved   | Reserved                                                                                                                                                                                                                    |
| 18-12  | PLLM[12:6] | A 13-bit bus that selects the values for the multiplication factor (see Note- below)                                                                                                                                        |
| 11-6   | Reserved   | Reserved                                                                                                                                                                                                                    |
| 5-0    | PLLD       | A 6-bit bus that selects the values for the reference divider                                                                                                                                                               |
| End of | Table 7-24 |                                                                                                                                                                                                                             |

#### Figure 7-20 Main PLL Control Register 1 (MAINPLLCTL1)

| 31                                      | 7 | 6     | 5    | 4    | 3   | 0        |
|-----------------------------------------|---|-------|------|------|-----|----------|
| Reserved                                |   | ENSAT | Rese | rved | BWA | DJ[11:8] |
| RW-000000000000000000000000000000000000 |   | RW-0  | RW   | -00  | RW  | /-0000   |

Legend: RW = Read/Write; -*n* = value after reset

#### Table 7-25 Main PLL Control Register 1 (MAINPLLCTL1) Field Descriptions

| Bit    | Field       | Description                                                                                                                                                                                                                 |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-7   | Reserved    | Reserved                                                                                                                                                                                                                    |
| 6      | ENSAT       | Must be set to 1 for proper operation of PLL                                                                                                                                                                                |
| 5-4    | Reserved    | Reserved                                                                                                                                                                                                                    |
| 3-0    | BWADJ[11:8] | BWADJ[11:8] and BWADJ[7:0] are located in MAINPLLCTL0 and MAINPLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |
| End of | Table 7-25  | ·                                                                                                                                                                                                                           |



SPRS708E—March 2014

**Note**—PLLM[5:0] bits of the multiplier is controlled by the PLLM register inside the PLL Controller and PLLM[12:6] bits are controlled by the MAINPLLCTL0 chip-level register. The MAINPLLCTL0 register PLLM[12:6] bits should be written just before writing to the PLLM register PLLM[5:0] bits in the controller to have the complete 13 bit value latched when the GO operation is initiated in the PLL controller. See the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for the recommended programming sequence. Output divide ratio and Bypass enable/disable of the Main PLL is controlled by the SECCTL register in the PLL Controller. See the *7.6.2.1 "PLL Secondary Control Register (SECCTL)*" for more details.

# 7.6.4 Main PLL and PLL Controller Initialization Sequence

See the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for details on the initialization sequence for Main PLL and PLL Controller.

# 7.6.5 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Electrical Data/Timing

| Table 7-26                        | Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing Requirements <sup>(1)</sup> (Part 1 of 2) |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| (see Figure 7-21 and Figure 7-22) |                                                                                                      |  |  |

| No. |                            |                                                                | Min                    | Max                    | Unit   |
|-----|----------------------------|----------------------------------------------------------------|------------------------|------------------------|--------|
|     |                            | CORECLK[P:N]                                                   |                        |                        |        |
| 1   | tc(CORCLKN)                | Cycle time _ CORECLKN cycle time                               | 3.2                    | 25                     | ns     |
| 1   | tc(CORECLKP)               | Cycle time _ CORECLKP cycle time                               | 3.2                    | 25                     | ns     |
| 3   | tw(CORECLKN)               | Pulse width _ CORECLKN high                                    | 0.45*tc(CORECLKN)      | 0.55*tc(CORECLKN)      | ns     |
| 2   | tw(CORECLKN)               | Pulse width _ CORECLKN low                                     | 0.45*tc(CORECLKN)      | 0.55*tc(CORECLKN)      | ns     |
| 2   | tw(CORECLKP)               | Pulse width _ CORECLKP high                                    | 0.45*tc(CORECLKP)      | 0.55*tc(CORECLKP)      | ns     |
| 3   | tw(CORECLKP)               | Pulse width _ CORECLKP low                                     | 0.45*tc(CORECLKP)      | 0.55*tc(CORECLKP)      | ns     |
| 4   | tr(CORECLK_250mv)          | Transition time _ CORECLK differential rise time (250mV)       | 50                     | 350                    | ps     |
| 4   | tf(CORECLK_250mv)          | Transition time _ CORECLK differential fall time (250mV)       | 50                     | 350                    | ps     |
| 5   | tj(CORECLKN)               | Jitter, peak_to_peak _ periodic CORECLKN                       |                        | 0.02*tc(CORECLKN)      | ps     |
| 5   | tj(CORECLKP)               | Jitter, peak_to_peak _ periodic CORECLKP                       |                        | 0.02*tc(CORECLKP)      | ps     |
|     |                            | SRIOSGMIICLK[P:N]                                              |                        |                        |        |
| 1   | tc(SRIOSGMIICLKN)          | Cycle time _ SRIOSGMIICLKN cycle time                          | 3.2 or 4               | 4 or 6.4               | ns     |
| 1   | tc(SRIOSGMIICLKP)          | Cycle time _ SRIOSGMIICLKP cycle time                          | 3.2 or 4               | 4 or 6.4               | ns     |
| 3   | tw(SRIOSGMIICLKN)          | Pulse width _ SRIOSGMIICLKN high                               | 0.45*tc(SRIOSGMIICLKN) | 0.55*tc(SRIOSGMIICLKN) | ns     |
| 2   | tw(SRIOSGMIICLKN)          | Pulse width _ SRIOSGMIICLKN low                                | 0.45*tc(SRIOSGMIICLKN) | 0.55*tc(SRIOSGMIICLKN) | ns     |
| 2   | tw(SRIOSGMIICLKP)          | Pulse width _ SRIOSGMIICLKP high                               | 0.45*tc(SRIOSGMIICLKP) | 0.55*tc(SRIOSGMIICLKP) | ns     |
| 3   | tw(SRIOSGMIICLKP)          | Pulse width _ SRIOSGMIICLKP low                                | 0.45*tc(SRIOSGMIICLKP) | 0.55*tc(SRIOSGMIICLKP) | ns     |
| 4   | tr(SRIOSGMIICLK_<br>250mv) | Transition time _ SRIOSGMIICLK differential rise time (250 mV) | 50                     | 350                    | ps     |
| 4   | tf(SRIOSGMIICLK_<br>250mv) | Transition time _ SRIOSGMIICLK differential fall time (250 mV) | 50                     | 350                    | ps     |
| 5   | tj(SRIOSGMIICLKN)          | Jitter, peak_to_peak _ periodic SRIOSGMIICLKN                  |                        | 4 <sup>(2)</sup>       | ps,RMS |
| 5   | tj(SRIOSGMIICLKP)          | Jitter, peak_to_peak _ periodic SRIOSGMIICLKP                  |                        | 4 <sup>(2)</sup>       | ps,RMS |
| 5   | tj(SRIOSGMIICLKN)          | Jitter, peak_to_peak _ periodic SRIOSGMIICLKN (SRIO not used)  |                        | 8 <sup>(2)</sup>       | ps,RMS |
| 5   | tj(SRIOSGMIICLKP)          | Jitter, peak_to_peak _ periodic SRIOSGMIICLKP (SRIO not used)  |                        | 8 <sup>(2)</sup>       | ps,RMS |

# Table 7-26Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing Requirements <sup>(1)</sup> (Part 2 of 2)(see Figure 7-21 and Figure 7-22)

| No. |                   |                                                           | Min               | Max               | Unit   |
|-----|-------------------|-----------------------------------------------------------|-------------------|-------------------|--------|
|     |                   | HyperLinkCLK[P:N]                                         |                   |                   |        |
| 1   | tc(MCMCLKN)       | Cycle time _ MCMCLKN cycle time                           | 3.2 or 4 or       | r 6.4             | ns     |
| 1   | tc(MCMCLKP)       | Cycle time _ MCMCLKP cycle time                           | 3.2 or 4 or       | r 6.4             | ns     |
| 3   | tw(MCMCLKN)       | Pulse width _ MCMCLKN high                                | 0.45*tc(MCMCLKN)  | 0.55*tc(MCMCLKN)  | ns     |
| 2   | tw(MCMCLKN)       | Pulse width _ MCMCLKN low                                 | 0.45*tc(MCMCLKN)  | 0.55*tc(MCMCLKN)  | ns     |
| 2   | tw(MCMCLKP)       | Pulse width _ MCMCLKP high                                | 0.45*tc(MCMCLKP)  | 0.55*tc(MCMCLKP)  | ns     |
| 3   | tw(MCMCLKP)       | Pulse width _ MCMCLKP low                                 | 0.45*tc(MCMCLKP)  | 0.55*tc(MCMCLKP)  | ns     |
| 4   | tr(MCMCLK_250mv)  | Transition time _ MCMCLK differential rise time (250mV)   | 50                | 350               | ps     |
| 4   | tf(MCMCLK_250mv)  | Transition time _ MCMCLK differential fall time (250mV)   | 50                | 350               | ps     |
| 5   | tj(MCMCLKN)       | Jitter, peak_to_peak _ periodic MCMCLKN                   |                   | 4 <sup>(2)</sup>  | •      |
| 5   | tj(MCMCLKP)       | Jitter, peak_to_peak _ periodic MCMCLKP                   |                   | 4 <sup>(2)</sup>  | ps,RMS |
|     |                   | PCIECLK[P:N]                                              |                   |                   |        |
| 1   | tc(PCIECLKN)      | Cycle time _ PCIECLKN cycle time                          | 3.2 or 4 or 6.    | 4 or 10           | ns     |
| 1   | tc(PCIECLKP)      | Cycle time _ PCIECLKP cycle time                          | 3.2 or 4 or 6.    | 4 or 10           | ns     |
| 3   | tw(PCIECLKN)      | Pulse width _ PCIECLKN high                               | 0.45*tc(PCIECLKN) | 0.55*tc(PCIECLKN) | ns     |
| 2   | tw(PCIECLKN)      | Pulse width _ PCIECLKN low                                | 0.45*tc(PCIECLKN) | 0.55*tc(PCIECLKN) | ns     |
| 2   | tw(PCIECLKP)      | Pulse width _ PCIECLKP high                               | 0.45*tc(PCIECLKP) | 0.55*tc(PCIECLKP) | ns     |
| 3   | tw(PCIECLKP)      | Pulse width _ PCIECLKP low                                | 0.45*tc(PCIECLKP) | 0.55*tc(PCIECLKP) | ns     |
| 4   | tr(PCIECLK_250mv) | Transition time _ PCIECLK differential rise time (250 mV) | 50                | 350               | ps     |
| 4   | tf(PCIECLK_250mv) | Transition time _ PCIECLK differential fall time (250 mV) | 50                | 350               | ps     |
| 5   | tj(PCIECLKN)      | Jitter, peak_to_peak _ periodic PCIECLKN                  |                   | 4 <sup>(2)</sup>  | ps,RMS |
| 5   | tj(PCIECLKP)      | Jitter, peak_to_peak _ periodic PCIECLKP                  |                   | 4 (2)             | ps,RMS |
| End | of Table 7-26     |                                                           |                   |                   |        |

1 See the Hardware Design Guide for KeyStone I Devices in "Related Documentation from Texas Instruments" on page 72 for detailed recommendations.

2 The jitter frequency mask shown in the Hardware Design Guide for KeyStone Devices in "Related Documentation from Texas Instruments" on page 72 must also be met for the specific operating mode chosen.

#### Figure 7-21 Main PLL Controller/SRIO/HyperLink/PCIe Clock Input Timing



Figure 7-22 Main PLL Clock Input Transition Time





# 7.7 DD3 PLL

The DDR3 PLL generates interface clocks for the DDR3 memory controller. When coming out of power-on reset, the DDR3 PLL is programmed to a valid frequency during the boot config before being enabled and used.

DDR3 PLL power is supplied externally via the DDR3 PLL power-supply pin (AVDDA2). An external EMI filter circuit must be added to all PLL supplies. See the *Hardware Design Guide for KeyStone I Devices* in "Related Documentation from Texas Instruments" on page 72. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI filter).

Figure 7-23 shows the DDR3 PLL.

### Figure 7-23 DDR3 PLL Block Diagram



# 7.7.1 DDR3 PLL Control Register

The DDR3 PLL, which is used to drive the DDR PHY for the EMIF, does not use a PLL controller. DDR3 PLL can be controlled using the DDR3PLLCTL0 and DDR3PLLCTL1 registers located in the Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software should go through an un-locking sequence using KICK0/KICK1 registers. For suggested configurable values see 2.5.4 "PLL Boot Configuration Settings" on page 38. See section 3.3.4 "Kicker Mechanism Register (KICK0 and KICK1)" on page 80 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only.

#### Figure 7-24 DDR3 PLL Control Register 0 (DDR3PLLCTL0)<sup>(1)</sup>

| 31           | 24 | 23     | 22   | 19   | 18 | 6               | ! | 5      | 0  |
|--------------|----|--------|------|------|----|-----------------|---|--------|----|
| BWADJ[7:0]   |    | BYPASS | Rese | rved |    | PLLM            |   | PLLD   |    |
| RW-0000 1001 |    | RW-0   | RW-0 | 0001 |    | RW-000000010011 | F | W-0000 | 00 |

Legend: RW = Read/Write; -n = value after reset

1 This register is reset on POR only. The regreset, reset, and bgreset from PLL are all tied to a common pll0\_ctrl\_rst\_n The pwrdn, regpwrdn, bgpwrdn are all tied to common pll0\_ctrl\_to\_pll\_pwrdn.

| Table 7-27 | DDR3 PLL Control Register 0 Field Descriptions (Part 1 of 2) |
|------------|--------------------------------------------------------------|
|------------|--------------------------------------------------------------|

| Bit   | Field      | Description                                                                                                                                                                                                                 |
|-------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-24 | BWADJ[7:0] | BWADJ[11:8] and BWADJ[7:0] are located in DDR3PLLCTL0 and DDR3PLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |
| 23    | BYPASS     | Enable bypass mode<br>0 = Bypass disabled<br>1 = Bypass enabled                                                                                                                                                             |
| 22-19 | Reserved   | Reserved                                                                                                                                                                                                                    |



| Bit               | Field | Description                                                        |  |  |
|-------------------|-------|--------------------------------------------------------------------|--|--|
| 18-6              | PLLM  | A 13-bit bus that selects the values for the multiplication factor |  |  |
| 5-0               | PLLD  | A 6-bit bus that selects the values for the reference divider      |  |  |
| End of Table 7-27 |       |                                                                    |  |  |

#### Table 7-27DDR3 PLL Control Register 0 Field Descriptions (Part 2 of 2)

#### Figure 7-25 DDR3 PLL Control Register 1 (DDR3PLLCTL1)

| 31                     | 14 | 13     | 12 |           | 7 | 6     | 5    | 4    | 3  | 0          |
|------------------------|----|--------|----|-----------|---|-------|------|------|----|------------|
| Reserved               |    | PLLRST |    | Reserved  |   | ENSAT | Rese | rved | BW | /ADJ[11:8] |
| RW-0000000000000000000 |    | RW-0   |    | RW-000000 |   | RW-0  | R    | -0   | F  | RW-0000    |

Legend: RW = Read/Write; -n = value after reset

| Table 7-28 DDR3 PLL Control Register 1 Field Descriptions |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Bit    | Field       | Description                                                                                                                                                                                                                 |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-14  | Reserved    | Reserved                                                                                                                                                                                                                    |
| 13     | PLLRST      | PLL reset bit.<br>0 = PLL reset is released.<br>1 = PLL reset is asserted.                                                                                                                                                  |
| 12-7   | Reserved    | Reserved                                                                                                                                                                                                                    |
| 6      | ENSAT       | Must be set to 1 for proper operation of PLL                                                                                                                                                                                |
| 5-4    | Reserved    | Reserved                                                                                                                                                                                                                    |
| 3-0    | BWADJ[11:8] | BWADJ[11:8] and BWADJ[7:0] are located in DDR3PLLCTL0 and DDR3PLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |
| End of | Table 7-28  |                                                                                                                                                                                                                             |

### 7.7.2 DDR3 PLL Device-Specific Information

As shown in Figure 7-23, the output of DDR3 PLL (PLLOUT) is divided by 2 and directly fed to the DDR3 memory controller. The DDR3 PLL is affected by power-on reset. During power-on resets, the internal clocks of the DDR3 PLL are affected as described in Section 7.5 "Reset Controller" on page 130. DDR3 PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets.

### 7.7.3 DDR3 PLL Initialization Sequence

See the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for details on the initialization sequence for DDR3 PLL.

**Note**—The DDR3 interface must reset every time the DDR3 PLL is re-programmed.



# 7.7.4 DDR3 PLL Input Clock Electrical Data/Timing

#### Table 7-29 DDR3 PLL DDRSYSCLK1(N|P) Timing Requirements

(see Figure 7-26 and Figure 7-22)

| No.   |                  |                                                          | Min              | Max              | Unit |
|-------|------------------|----------------------------------------------------------|------------------|------------------|------|
|       |                  | DDRCLK[P:N]                                              |                  |                  |      |
| 1     | tc(DDRCLKN)      | Cycle time _ DDRCLKN cycle time                          | 3.2              | 25               | ns   |
| 1     | tc(DDRCLKP)      | Cycle time _ DDRCLKP cycle time                          | 3.2              | 25               | ns   |
| 3     | tw(DDRCLKN)      | Pulse width _ DDRCLKN high                               | 0.45*tc(DDRCLKN) | 0.55*tc(DDRCLKN) | ns   |
| 2     | tw(DDRCLKN)      | Pulse width _ DDRCLKN low                                | 0.45*tc(DDRCLKN) | 0.55*tc(DDRCLKN) | ns   |
| 2     | tw(DDRCLKP)      | Pulse width _ DDRCLKP high                               | 0.45*tc(DDRCLKP) | 0.55*tc(DDRCLKP) | ns   |
| 3     | tw(DDRCLKP)      | Pulse width _ DDRCLKP low                                | 0.45*tc(DDRCLKP) | 0.55*tc(DDRCLKP) | ns   |
| 4     | tr(DDRCLK_250mv) | Transition time _ DDRCLK differential rise time (250 mV) | 50               | 350              | ps   |
| 4     | tf(DDRCLK_250mv) | Transition time _ DDRCLK differential fall time (250 mV) | 50               | 350              | ps   |
| 5     | tj(DDRCLKN)      | Jitter, peak_to_peak _ periodic DDRCLKN                  |                  | 0.02*tc(DDRCLKN) | ps   |
| 5     | tj(DDRCLKP)      | Jitter, peak_to_peak _ periodic DDRCLKP                  |                  | 0.02*tc(DDRCLKP) | ps   |
| End o | of Table 7-29    |                                                          |                  |                  |      |

#### Figure 7-26 DDR3 PLL DDRCLK Timing





# 7.8 PASS PLL

The PASS PLL generates interface clocks for the Network Coprocessor. Using the PACLKSEL pin the user can select the input source of PASS PLL as either the output of CORECLK clock reference sources or the PASSCLK clock reference sources. When coming out of power-on reset, PASS PLL comes out in a bypass mode and must be programmed to a valid frequency before being enabled and used.

PASS PLL power is supplied via the PASS PLL power-supply pin (AVDDA3). An external EMI filter circuit must be added to all PLL supplies. See the *Hardware Design Guide for KeyStone I Devices* in "Related Documentation from Texas Instruments" on page 72. for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter).

Figure 7-27 shows the PASS PLL.





# 7.8.1 PASS PLL Control Register

The PASS PLL, which is used to drive the Network Coprocessor, does not use a PLL controller. The PASS PLL can be controlled using the PASSPLLCTL0 and PASSPLLCTL1 registers located in Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software should go through an un-locking sequence using KICK0/KICK1 registers. For suggested configurable values see 2.5.4 "PLL Boot Configuration Settings" on page 38. See section 3.3.4 "Kicker Mechanism Register (KICK0 and KICK1)" on page 80 for the address location of the registers and locking and unlocking sequences for accessing the registers. This register is reset on POR only.

|             | (1)                                                      |
|-------------|----------------------------------------------------------|
| Figure 7-28 | PASS PLL Control Register 0 (PASSPLLCTL0) <sup>(1)</sup> |
| rigule /-20 | r ASS r LL CONTION REGISTER O (r ASSF LLCTLO)            |

| 31           | 24 | 23     | 22   | 19    | 18 |                 | 6 | 5    | 0     |
|--------------|----|--------|------|-------|----|-----------------|---|------|-------|
| BWADJ[7:0]   |    | BYPASS | Rese | erved |    | PLLM            |   | PL   | LD    |
| RW-0000 1001 |    | RW-0   | RW-  | 0001  |    | RW-000000010011 |   | RW-0 | 00000 |

Legend: RW = Read/Write; -n = value after reset

1 This register is Reset on POR only. The regreset, reset and bgreset from PLL are all tied to a common pll0\_ctrl\_rst\_n The pwrdn, regpwrdn, bgpwrdn are all tied to common pll0\_ctrl\_to\_pll\_pwrdn.



#### Table 7-30 PASS PLL Control Register 0 Field Descriptions

| Bit    | Field             | Description                                                                                                                                                                                                                 |  |  |  |  |
|--------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 31-24  | BWADJ[7:0]        | BWADJ[11:8] and BWADJ[7:0] are located in PASSPLLCTL0 and PASSPLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |  |  |  |  |
| 23     | BYPASS            | Enable bypass mode<br>0 = Bypass disabled<br>1 = Bypass enabled                                                                                                                                                             |  |  |  |  |
| 22-19  | Reserved          | Reserved                                                                                                                                                                                                                    |  |  |  |  |
| 18-6   | PLLM              | A 13-bit bus that selects the values for the multiplication factor                                                                                                                                                          |  |  |  |  |
| 5-0    | PLLD              | A 6-bit bus that selects the values for the reference divider                                                                                                                                                               |  |  |  |  |
| End of | End of Table 7-30 |                                                                                                                                                                                                                             |  |  |  |  |

#### Figure 7-29 PASS PLL Control Register 1 (PASSPLLCTL1)

|   | 31                                      | 15 | 14     | 13        | 12 |           | 7 | 6     | 5    | 4    | 3  | 0          |
|---|-----------------------------------------|----|--------|-----------|----|-----------|---|-------|------|------|----|------------|
|   | Reserved                                |    | PLLRST | PLLSELECT |    | Reserved  |   | ENSAT | Rese | rved | BV | VADJ[11:8] |
| _ | RW-000000000000000000000000000000000000 |    | RW-0   | RW-0      |    | RW-000000 |   | RW-0  | R    | -0   | I  | RW-0000    |

Legend: RW = Read/Write; -n = value after reset

#### Table 7-31 PASS PLL Control Register 1 Field Descriptions

| Bit    | Field       | Description                                                                                                                                                                                                                 |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-15  | Reserved    | Reserved                                                                                                                                                                                                                    |
| 14     | PLLRST      | PLL reset bit.<br>0 = PLL reset is released<br>1 = PLL reset is asserted                                                                                                                                                    |
| 13     | PLLSELECT   | <ul> <li>PASS PLL select bit. Note that this bit must be set before the Ethernet subsystem is configured and used.</li> <li>0 = Reserved</li> <li>1 = PASS PLL output clock is used as the input to PASS</li> </ul>         |
| 12-7   | Reserved    | Reserved                                                                                                                                                                                                                    |
| 6      | ENSAT       | Must be set to 1 for proper operation of the PLL                                                                                                                                                                            |
| 5-4    | Reserved    | Reserved                                                                                                                                                                                                                    |
| 3-0    | BWADJ[11:8] | BWADJ[11:8] and BWADJ[7:0] are located in PASSPLLCTL0 and PASSPLLCTL1 registers. The combination (BWADJ[11:0]) should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1 |
| End of | Table 7-31  |                                                                                                                                                                                                                             |

#### 7.8.2 PASS PLL Device-Specific Information

As shown in Figure 7-27, the output of PASS PLL (PLLOUT) is divided by 2 and directly fed to the Network Coprocessor. The PASS PLL is affected by power-on reset. During power-on resets, the internal clocks of the PASS PLL are affected as described in Section 7.5 "Reset Controller" on page 130. The PASS PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets.

### 7.8.3 PASS PLL Initialization Sequence

See the *Phase Locked Loop (PLL) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for details on the initialization sequence for PASS PLL.

# 7.8.4 PASS PLL Input Clock Electrical Data/Timing

#### Table 7-32 PASS PLL Timing Requirements

(See Figure 7-30 and Figure 7-22)

| No. |                   |                                                           | Min               | Max               | Unit      |  |  |  |  |
|-----|-------------------|-----------------------------------------------------------|-------------------|-------------------|-----------|--|--|--|--|
|     | PASSCLK[P:N]      |                                                           |                   |                   |           |  |  |  |  |
| 1   | tc(PASSCLKN)      | Cycle Time _ PASSCLKN cycle time                          | 3.2               | 25                | ns        |  |  |  |  |
| 1   | tc(PASSCLKP)      | Cycle Time _ PASSCLKP cycle time                          | 3.2               | 25                | ns        |  |  |  |  |
| 3   | tw(PASSCLKN)      | Pulse Width _ PASSCLKN high                               | 0.45*tc(PASSCLKN) | 0.55*tc(PASSCLKN) | ns        |  |  |  |  |
| 2   | tw(PASSCLKN)      | Pulse Width _ PASSCLKN low                                | 0.45*tc(PASSCLKN) | 0.55*tc(PASSCLKN) | ns        |  |  |  |  |
| 2   | tw(PASSCLKP)      | Pulse Width _ PASSCLKP high                               | 0.45*tc(PASSCLKP) | 0.55*tc(PASSCLKP) | ns        |  |  |  |  |
| 3   | tw(PASSCLKP)      | Pulse Width _ PASSCLKP low                                | 0.45*tc(PASSCLKP) | 0.55*tc(PASSCLKP) | ns        |  |  |  |  |
| 4   | tr(PASSCLK_250mv) | Transition time _ PASSCLK differential rise time (250 mV) | 50                | 350               | ps        |  |  |  |  |
| 4   | tf(PASSCLK_250mv) | Transition time _ PASSCLK differential fall time (250 mV) | 50                | 350               | ps        |  |  |  |  |
| 5   | tj(PASSCLKN)      | Jitter, peak_to_peak _ periodic PASSCLKN                  |                   | 0.02*tc(PASSCLKN) | ps, pk-pk |  |  |  |  |
| 5   | tj(PASSCLKP)      | Jitter, peak_to_peak _ periodic PASSCLKP                  |                   | 0.02*tc(PASSCLKP) | ps, pk-pk |  |  |  |  |

#### Figure 7-30 PASS PLL Timing





# 7.9 Enhanced Direct Memory Access (EDMA3) Controller

The primary purpose of the EDMA3 is to service user-programmed data transfers between two memory-mapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data movement between external memory and internal memory), performs sorting or subframe extraction of various data structures, services event driven peripherals, and offloads data transfers from the device CPU.

There are 3 EDMA Channel Controllers on the C6672 DSP, EDMA3CC0, EDMA3CC1, and EDMA3CC2.

- EDMA3CC0 has two transfer controllers: EDMA3TC1 and EDMA3TC2.
- EDMA3CC1 has four transfer controllers: EDMA3TC0, EDMA3TC1, EDMA3TC2, and EDMA3TC3.
- EDMA3CC2 has four transfer controllers: EDMA3TC0, EDMA3TC1, EDMA3TC2, and EDMA3TC3.

In the context of this document, EDMA3TCx associated with EDMA3CCy, and is referred to as EDMA3CCy TCx. Each of the transfer controllers has a direct connection to the switch fabric. Section 4.2 "Switch Fabric Connections" lists the peripherals that can be accessed by the transfer controllers.

EDMA3CC0 is optimized to be used for transfers to/from/within the MSMC and DDR-3 subsytems. The others are to be used for the remaining traffic.

Each EDMA3 Channel Controller includes the following features:

- Fully orthogonal transfer description
  - Three transfer dimensions:
    - Array (multiple bytes)
    - Frame (multiple arrays)
    - Block (multiple frames)
  - Single event can trigger transfer of array, frame, or entire block
  - Independent indexes on source and destination
- Flexible transfer definition:
  - Increment or FIFO transfer addressing modes
  - Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous transfers, all with no CPU intervention
  - Chaining allows multiple transfers to execute with one event
- 128 PaRAM entries for EDMA3CC0, 512 each for EDMA3CC1 and EDMA3CC2
  - Used to define transfer context for channels
  - Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry
- 16 DMA channels for EDMA3CC0, 64 each for EDMA3CC1 and EDMA3CC2
  - Manually triggered (CPU writes to channel controller register), external event triggered, and chain triggered (completion of one transfer triggers another)
- 8 Quick DMA (QDMA) channels per EDMA 3 Channel Controller
  - Used for software-driven transfers
  - Triggered upon writing to a single PaRAM set entry
- Two transfer controllers and two event queues with programmable system-level priority for EDMA3CC0, four transfer controllers and four event queues with programmable system-level priority per channel controller for EDMA3CC1 and EDMA3CC2
- Interrupt generation for transfer completion and error conditions



- Debug visibility
  - Queue watermarking/threshold allows detection of maximum usage of event queues
  - Error and status recording to facilitate debug

# 7.9.1 EDMA3 Device-Specific Information

The EDMA supports two addressing modes: constant addressing and increment addressing mode. Constant addressing mode is applicable to a very limited set of use cases. For most applications, increment mode must be used. For more information on these two addressing modes, see the *Enhanced Direct Memory Access 3 (EDMA3) Controller for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

For the range of memory addresses that include EDMA3 channel controller (EDMA3CC) control registers and EDMA3 transfer controller (EDMA3TC) control register see Section Table 2-2"Memory Map Summary" on page 17. For memory offsets and other details on EDMA3CC and EDMA3TC control registers entries, see the *Enhanced Direct Memory Access 3 (EDMA3) Controller for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

# 7.9.2 EDMA3 Channel Controller Configuration

Table 7-33 shows the configuration for each of the EDMA3 channel controllers present on the device.

| Description                                    | EDMA3 CC0 | EDMA3 CC1 | EDMA3 CC2 |
|------------------------------------------------|-----------|-----------|-----------|
| Number of DMA channels in Channel Controller   | 16        | 64        | 64        |
| Number of QDMA channels                        | 8         | 8         | 8         |
| Number of interrupt channels                   | 16        | 64        | 64        |
| Number of PaRAM set entries                    | 128       | 512       | 512       |
| Number of event queues                         | 2         | 4         | 4         |
| Number of Transfer Controllers                 | 2         | 4         | 4         |
| Memory Protection Existence                    | Yes       | Yes       | Yes       |
| Number of Memory Protection and Shadow Regions | 8         | 8         | 8         |
| End of Table 7-33                              |           |           |           |

 Table 7-33
 EDMA3 Channel Controller Configuration

# 7.9.3 EDMA3 Transfer Controller Configuration

Each transfer controller on a device is designed differently based on considerations like performance requirements, system topology (like main TeraNet bus width, external memory bus width), etc. The parameters that determine the transfer controller configurations are:

- **FIFOSIZE:** Determines the size in bytes for the data FIFO that is the temporary buffer for the in-flight data. The data FIFO is where the read return data read by the TC read controller from the source endpoint is stored and subsequently written out to the destination endpoint by the TC write controller.
- **BUSWIDTH:** The width of the read and write data buses in bytes, for the TC read and write controller, respectively. This is typically equal to the bus width of the main TeraNet interface.
- **Default Burst Size (DBS):** The DBS is the maximum number of bytes per read/write command issued by a transfer controller.
- **DSTREGDEPTH:** This determines the number of destination FIFO register set. The number of destination FIFO register set for a transfer controller determines the maximum number of outstanding transfer requests.

All four parameters listed above are fixed by the design of the device.

Table 7-34 shows the configuration for each of the EDMA3 transfer controllers present on the device.

SPRS708E—March 2014



|                  | EDMA3 CC0         |            |            | EDMA      | <b>\3 CC1</b> |           |            | EDMA      | A3 CC2    |            |
|------------------|-------------------|------------|------------|-----------|---------------|-----------|------------|-----------|-----------|------------|
| Parameter        | тсо               | TC1        | тсо        | TC1       | TC2           | тсз       | тсо        | TC1       | TC2       | тсз        |
| FIFOSIZE         | 1024 bytes        | 1024 bytes | 1024 bytes | 512 bytes | 1024 bytes    | 512 bytes | 1024 bytes | 512 bytes | 512 bytes | 1024 bytes |
| BUSWIDTH         | 32 bytes          | 32 bytes   | 16 bytes   | 16 bytes  | 16 bytes      | 16 bytes  | 16 bytes   | 16 bytes  | 16 bytes  | 16 bytes   |
| DSTREGDEPTH      | 4 entries         | 4 entries  | 4 entries  | 4 entries | 4 entries     | 4 entries | 4 entries  | 4 entries | 4 entries | 4 entries  |
| DBS              | 128 bytes         | 128 bytes  | 128 bytes  | 64 bytes  | 128 bytes     | 64 bytes  | 128 bytes  | 64 bytes  | 64 bytes  | 128 bytes  |
| End of Table 7-3 | End of Table 7-34 |            |            |           |               |           |            |           |           |            |

#### Table 7-34 EDMA3 Transfer Controller Configuration

# 7.9.4 EDMA3 Channel Synchronization Events

The EDMA3 supports up to 16 DMA channels for EDMA3CC0, 64 each for EDMA3CC1 and EDMA3CC2 that can be used to service system peripherals and to move data between system memories. DMA channels can be triggered by synchronization events generated by system peripherals. The following tables lists the source of the synchronization event associated with each of the EDMA EDMA3CC DMA channels. On the C6672, the association of each synchronization event and DMA channel is fixed and cannot be reprogrammed.

For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured, processed, prioritized, linked, chained, and cleared, etc., see the *Enhanced Direct Memory Access 3 (EDMA3) Controller for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

| Event Number      | Event     | Event Description           |
|-------------------|-----------|-----------------------------|
| 0                 | TINT8L    | Timer interrupt low         |
| 1                 | TINT8H    | Timer interrupt high        |
| 2                 | TINT9L    | Timer interrupt low         |
| 3                 | TINT9H    | Timer interrupt high        |
| 4                 | TINT10L   | Timer interrupt low         |
| 5                 | TINT10H   | Timer interrupt high        |
| 6                 | TINT11L   | Timer interrupt low         |
| 7                 | TINT11H   | Timer interrupt high        |
| 8                 | CIC3_OUT0 | Interrupt Controller output |
| 9                 | CIC3_OUT1 | Interrupt Controller output |
| 10                | CIC3_OUT2 | Interrupt Controller output |
| 11                | CIC3_OUT3 | Interrupt Controller output |
| 12                | CIC3_OUT4 | Interrupt Controller output |
| 13                | CIC3_OUT5 | Interrupt Controller output |
| 14                | CIC3_OUT6 | Interrupt Controller output |
| 15                | CIC3_OUT7 | Interrupt Controller output |
| End of Table 7-35 |           |                             |

Table 7-35EDMA3CC0 Events for C6672

#### Table 7-36EDMA3CC1 Events for C6672 (Part 1 of 3)

| Event Number | Event   | Event Description |
|--------------|---------|-------------------|
| 0            | SPIINTO | SPI interrupt     |
| 1            | SPIINT1 | SPI interrupt     |
| 2            | SPIXEVT | Transmit event    |
| 3            | SPIREVT | Receive event     |



| Table 7-36EDMA3CC1 Events for C6672 (Part 2 of 3) |               |                             |
|---------------------------------------------------|---------------|-----------------------------|
| Event Number                                      | Event         | Event Description           |
| 4                                                 | I2CREVT       | I2C receive event           |
| 5                                                 | I2CXEVT       | I2C transmit event          |
| 6                                                 | <b>GPINTO</b> | GPIO interrupt              |
| 7                                                 | GPINT1        | GPIO interrupt              |
| 8                                                 | GPINT2        | GPIO interrupt              |
| 9                                                 | GPINT3        | GPIO interrupt              |
| 10                                                | GPINT4        | GPIO interrupt              |
| 11                                                | GPINT5        | GPIO interrupt              |
| 12                                                | GPINT6        | GPIO interrupt              |
| 13                                                | GPINT7        | GPIO interrupt              |
| 14                                                | SEMINTO       | Semaphore interrupt         |
| 15                                                | SEMINT1       | Semaphore interrupt         |
| 16                                                | Reserved      |                             |
| 17                                                | Reserved      |                             |
| 18                                                | Reserved      |                             |
| 19                                                | Reserved      |                             |
| 20                                                | Reserved      |                             |
| 21                                                | Reserved      |                             |
| 22                                                | TINT8L        | Timer interrupt low         |
| 23                                                | TINT8H        | Timer interrupt high        |
| 24                                                | TINT9L        | Timer interrupt low         |
| 25                                                | TINT9H        | Timer interrupt high        |
| 26                                                | TINT10L       | Timer interrupt low         |
| 27                                                | TINT10H       | Timer interrupt high        |
| 28                                                | TINT11L       | Timer interrupt low         |
| 29                                                | TINT11H       | Timer interrupt high        |
| 30                                                | TINT12L       | Timer interrupt low         |
| 31                                                | TINT12H       | Timer interrupt high        |
| 32                                                | TINT13L       | Timer interrupt low         |
| 33                                                | TINT13H       | Timer interrupt high        |
| 34                                                | TINT14L       | Timer interrupt low         |
| 35                                                | TINT14H       | Timer interrupt high        |
| 36                                                | TINT15L       | Timer interrupt low         |
| 37                                                | TINT15L       | Timer interrupt high        |
| 38                                                | CIC2_OUT44    | Interrupt Controller output |
| 39                                                | CIC2_OUT45    | Interrupt Controller output |
| 40                                                | CIC2_OUT46    | Interrupt Controller output |
| 41                                                | CIC2_OUT47    | Interrupt Controller output |
| 42                                                | CIC2_OUT0     | Interrupt Controller output |
| 43                                                | CIC2_OUT1     | Interrupt Controller output |
| 44                                                | CIC2_OUT2     | Interrupt Controller output |
| 45                                                | CIC2_OUT3     | Interrupt Controller output |
| 46                                                | CIC2_OUT4     | Interrupt Controller output |
| 47                                                | CIC2_OUT5     | Interrupt Controller output |
| 47                                                | CIC2_OUT5     | Interrupt Controller output |

# Table 7-36EDMA3CC1 Events for C6672 (Part 2 of 3)

| TMS32     | 0C6672                                               |
|-----------|------------------------------------------------------|
| Multico   | re Fixed and Floating-Point Digital Signal Processor |
| CDDC 700E | March 2014                                           |

SPRS708E—March 2014



#### Table 7-36EDMA3CC1 Events for C6672 (Part 3 of 3)

| Event Number      | Event             | Event Description           |  |  |  |  |
|-------------------|-------------------|-----------------------------|--|--|--|--|
| 48                | CIC2_OUT6         | Interrupt Controller output |  |  |  |  |
| 49                | CIC2_OUT7         | Interrupt Controller output |  |  |  |  |
| 50                | CIC2_OUT8         | Interrupt Controller output |  |  |  |  |
| 51                | CIC2_OUT9         | Interrupt Controller output |  |  |  |  |
| 52                | CIC2_OUT10        | Interrupt Controller output |  |  |  |  |
| 53                | CIC2_OUT11        | Interrupt Controller output |  |  |  |  |
| 54                | CIC2_OUT12        | Interrupt Controller output |  |  |  |  |
| 55                | CIC2_OUT13        | Interrupt Controller output |  |  |  |  |
| 56                | CIC2_OUT14        | Interrupt Controller output |  |  |  |  |
| 57                | CIC2_OUT15        | Interrupt Controller output |  |  |  |  |
| 58                | CIC2_OUT16        | Interrupt Controller output |  |  |  |  |
| 59                | CIC2_OUT17        | Interrupt Controller output |  |  |  |  |
| 60                | CIC2_OUT18        | Interrupt Controller output |  |  |  |  |
| 61                | CIC2_OUT19        | Interrupt Controller output |  |  |  |  |
| 62                | CIC2_OUT20        | Interrupt Controller output |  |  |  |  |
| 63                | CIC2_OUT21        | Interrupt Controller output |  |  |  |  |
| End of Table 7-36 | End of Table 7-36 |                             |  |  |  |  |

#### Table 7-37EDMA3CC2 Events for C6672 (Part 1 of 2)

| Event Number | Event    | Event Description   |
|--------------|----------|---------------------|
| 0            | SPIINTO  | SPI interrupt       |
| 1            | SPIINT1  | SPI interrupt       |
| 2            | SPIXEVT  | Transmit event      |
| 3            | SPIREVT  | Receive event       |
| 4            | I2CREVT  | I2C receive event   |
| 5            | I2CXEVT  | I2C transmit event  |
| 6            | GPINT0   | GPIO interrupt      |
| 7            | GPINT1   | GPIO interrupt      |
| 8            | GPINT2   | GPIO Interrupt      |
| 9            | GPINT3   | GPIO interrupt      |
| 10           | GPINT4   | GPIO interrupt      |
| 11           | GPINT5   | GPIO interrupt      |
| 12           | GPINT6   | GPIO interrupt      |
| 13           | GPINT7   | GPIO interrupt      |
| 14           | SEMINTO  | Semaphore interrupt |
| 15           | SEMINT1  | Semaphore interrupt |
| 16           | Reserved |                     |
| 17           | Reserved |                     |
| 18           | Reserved |                     |
| 19           | Reserved |                     |
| 20           | Reserved |                     |
| 21           | Reserved |                     |
| 22           | TINT8L   | Timer interrupt low |



| able 7-37 EDMA3CC2 Events for C6672 (Part 2 of 2) |            |                             |
|---------------------------------------------------|------------|-----------------------------|
| Event Number                                      | Event      | Event Description           |
| 23                                                | TINT8H     | Timer interrupt high        |
| 24                                                | TINT9L     | Timer interrupt low         |
| 25                                                | TINT9H     | Timer interrupt high        |
| 26                                                | TINT10L    | Timer interrupt low         |
| 27                                                | TINT10H    | Timer interrupt high        |
| 28                                                | TINT11L    | Timer interrupt low         |
| 29                                                | TINT11H    | Timer interrupt high        |
| 30                                                | TINT12L    | Timer interrupt low         |
| 31                                                | TINT12H    | Timer interrupt high        |
| 32                                                | TINT13L    | Timer interrupt low         |
| 33                                                | TINT13H    | Timer interrupt high        |
| 34                                                | TINT14L    | Timer interrupt low         |
| 35                                                | TINT14H    | Timer interrupt high        |
| 36                                                | TINT15L    | Timer interrupt low         |
| 37                                                | TINT15H    | Timer interrupt high        |
| 38                                                | CIC2_OUT48 | Interrupt Controller output |
| 39                                                | CIC2_OUT49 | Interrupt Controller output |
| 40                                                | URXEVT     | UART receive event          |
| 41                                                | UTXEVT     | UART transmit event         |
| 42                                                | CIC2_OUT22 | Interrupt Controller output |
| 43                                                | CIC2_OUT23 | Interrupt Controller output |
| 44                                                | CIC2_OUT24 | Interrupt Controller output |
| 45                                                | CIC2_OUT25 | Interrupt Controller output |
| 46                                                | CIC2_OUT26 | Interrupt Controller output |
| 47                                                | CIC2_OUT27 | Interrupt Controller output |
| 48                                                | CIC2_OUT28 | Interrupt Controller output |
| 49                                                | CIC2_OUT29 | Interrupt Controller output |
| 50                                                | CIC2_OUT30 | Interrupt Controller output |
| 51                                                | CIC2_OUT31 | Interrupt Controller output |
| 52                                                | CIC2_OUT32 | Interrupt Controller output |
| 53                                                | CIC2_OUT33 | Interrupt Controller output |
| 54                                                | CIC2_OUT34 | Interrupt Controller output |
| 55                                                | CIC2_OUT35 | Interrupt Controller output |
| 56                                                | CIC2_OUT36 | Interrupt Controller output |
| 57                                                | CIC2_OUT37 | Interrupt Controller output |
| 58                                                | CIC2_OUT38 | Interrupt Controller output |
| 59                                                | CIC2_OUT39 | Interrupt Controller output |
| 60                                                | CIC2_OUT40 | Interrupt Controller output |
| 61                                                | CIC2_OUT41 | Interrupt Controller output |
| 62                                                | CIC2_OUT42 | Interrupt Controller output |
| 63                                                | CIC2_OUT43 | Interrupt Controller output |
| End of Table 7-3                                  | 37         |                             |

# Table 7-37EDMA3CC2 Events for C6672 (Part 2 of 2)



# 7.10 Interrupts

# 7.10.1 Interrupt Sources and Interrupt Controller

The CPU interrupts on the C6672 device are configured through the C66x CorePac Interrupt Controller. The interrupt controller allows for up to 128 system events to be programmed to any of the twelve CPU interrupt inputs (CPUINT4 - CPUINT15), the CPU exception input (EXCEP), or the advanced emulation logic. The 128 system events consist of both internally-generated events (within the CorePac) and chip-level events.

Additional system events are routed to each of the C66x CorePacs to provide chip-level events that are not required as CPU interrupts/exceptions to be routed to the interrupt controller as emulation events. Additionally, error-class events or infrequently used events are also routed through the system event router to offload the C66x CorePac interrupt selector. This is accomplished through chip interrupt controller (CIC) blocks. This is clocked using CPU/6.

There are a large number of events at the chip level. The chip level CIC provides a flexible way to combine and remap those events. Multiple events can be combined to a single event through chip level CIC. However, an event can be mapped only to a single event output from the chip level CIC. The chip level CIC also allows the software to trigger system event through memory writes. The broadcast events to C66x CorePacs can be used for synchronization among multiple cores or inter-processor communication purpose and etc. For more details on the CIC features, see the *Chip Interrupt Controller (CIC) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

#### \_

**Note**—Modules such as MPU, Tracer, and BOOT\_CFG have level interrupts and EOI handshaking interface. The EOI value is 0 for MPU, Tracer, and BOOT\_CFG.



### Figure 7-31 shows the C6672 interrupt topology.



Figure 7-32 shows the mapping of system events. For more information on the Interrupt Controller, see the *C66x DSP CorePac User Guide* in "Related Documentation from Texas Instruments" on page 72.

| Figure 7-32 | TMS320C6672 Sv | stem Event Inputs  | — C66x CorePac Prima | ry Interrupts (Part 1 of 4)         |
|-------------|----------------|--------------------|----------------------|-------------------------------------|
|             |                | stern at ent mpats | even even der mina   | <i>y</i> meen up to (i ui t i oi i) |

| Input Event Number | Interrupt Event                | Description                                                                                 |
|--------------------|--------------------------------|---------------------------------------------------------------------------------------------|
| 0                  | EVTO                           | Event combiner 0 output                                                                     |
| 1                  | EVT1                           | Event combiner 1 output                                                                     |
| 2                  | EVT2                           | Event combiner 2 output                                                                     |
| 3                  | EVT3                           | Event combiner 3 output                                                                     |
| 4                  | TETBHFULLINTn <sup>(1)</sup>   | TETB is half full                                                                           |
| 5                  | TETBFULLINTn <sup>(1)</sup>    | TETB is full                                                                                |
| 6                  | TETBACQINTn <sup>(1)</sup>     | Acquisition has been completed                                                              |
| 7                  | TETBOVFLINTn <sup>(1)</sup>    | Overflow condition interrupt                                                                |
| 8                  | TETBUNFLINTn <sup>(1)</sup>    | Underflow condition interrupt                                                               |
| 9                  | EMU_DTDMA                      | ECM interrupt for:<br>1. Host scan access<br>2. DTDMA transfer complete<br>3. AET interrupt |
| 10                 | MSMC_mpf_errorn <sup>(2)</sup> | Memory protection fault indicators for local core                                           |
| 11                 | EMU_RTDXRX                     | RTDX receive complete                                                                       |
| 12                 | EMU_RTDXTX                     | RTDX transmit complete                                                                      |





| Figure 7-32 | TMS320C6672 System Event Inputs — C66x CorePac Primary Interrupts (Part 2 of 4) |
|-------------|---------------------------------------------------------------------------------|
|-------------|---------------------------------------------------------------------------------|

| Figure 7-32 TMS | 320C6672 System Event Inputs — C66x CorePac Prima<br>Interrupt Event | Description                               |
|-----------------|----------------------------------------------------------------------|-------------------------------------------|
| 13              | IDMA0                                                                | IDMA channel 0 interrupt                  |
|                 | IDMA1                                                                | IDMA channel 1 interrupt                  |
| 14              | SEMERRn <sup>(3)</sup>                                               | •                                         |
| 15              | SEMINTn <sup>(3)</sup>                                               | Semaphore error interrupt                 |
| 16              |                                                                      | Semaphore interrupt                       |
| 17              | PCIExpress_MSI_INTn <sup>(4)</sup>                                   | Message signaled interrupt mode           |
| 18              | TSIP0_ERRINT[n] <sup>(5)</sup>                                       | TSIP0 receive/transmit error interrupt    |
| 19              | TSIP1_ERRINT[n] <sup>(5)</sup>                                       | TSIP1 receive/transmit error interrupt    |
| 20              | INTDST(n+16) <sup>(6)</sup>                                          | SRIO Interrupt                            |
| 21              | CIC0_OUT(32+0+11*n)                                                  | Interrupt Controller Output               |
| 22              | CIC0_OUT(32+1+11*n)                                                  | Interrupt Controller Output               |
| 23              | CIC0_OUT(32+2+11*n)                                                  | Interrupt Controller Output               |
| 24              | CIC0_OUT(32+3+11*n)                                                  | Interrupt Controller Output               |
| 25              | CIC0_OUT(32+4+11*n)                                                  | Interrupt Controller Output               |
| 26              | CIC0_OUT(32+5+11*n)                                                  | Interrupt Controller Output               |
| 27              | CIC0_OUT(32+6+11*n)                                                  | Interrupt Controller Output               |
| 28              | CIC0_OUT(32+7+11*n)                                                  | Interrupt Controller Output               |
| 29              | CIC0_OUT(32+8+11*n)                                                  | Interrupt Controller Output               |
| 30              | CIC0_OUT(32+9+11*n)                                                  | Interrupt Controller Output               |
| 31              | CIC0_OUT(32+10+11*n)                                                 | Interrupt Controller Output               |
| 32              | QM_INT_LOW_0                                                         | QM Interrupt for 0~31 Queues              |
| 33              | QM_INT_LOW_1                                                         | QM Interrupt for 32~63 Queues             |
| 34              | QM_INT_LOW_2                                                         | QM Interrupt for 64~95 Queues             |
| 35              | QM_INT_LOW_3                                                         | QM Interrupt for 96~127 Queues            |
| 36              | QM_INT_LOW_4                                                         | QM Interrupt for 128~159 Queues           |
| 37              | QM_INT_LOW_5                                                         | QM Interrupt for 160~191 Queues           |
| 38              | QM_INT_LOW_6                                                         | QM Interrupt for 192~223 Queues           |
| 39              | QM_INT_LOW_7                                                         | QM Interrupt for 224~255 Queues           |
| 40              | QM_INT_LOW_8                                                         | QM Interrupt for 256~287 Queues           |
| 41              | QM_INT_LOW_9                                                         | QM Interrupt for 288~319 Queues           |
| 42              | QM_INT_LOW_10                                                        | QM Interrupt for 320~351 Queues           |
| 43              | QM_INT_LOW_11                                                        | QM Interrupt for 352~383 Queues           |
| 44              | QM_INT_LOW_12                                                        | QM Interrupt for 384~415 Queues           |
| 45              | QM_INT_LOW_13                                                        | QM Interrupt for 416~447 Queues           |
| 46              | QM INT LOW 14                                                        | QM Interrupt for 448~479 Queues           |
| 47              | QM_INT_LOW_15                                                        | QM Interrupt for 480~511 Queues           |
| 48              | QM_INT_LIGH_n <sup>(7)</sup>                                         | QM Interrupt for Queue 704+n <sup>8</sup> |
| 49              | QM_INT_HIGH_(n+8) <sup>(7)</sup>                                     | QM Interrupt for Queue 712+n8             |
| 50              | QM_INT_HIGH_(n+16) <sup>(7)</sup>                                    | QM Interrupt for Queue 720+n8             |
| 50              | QM_INT_HIGH_(n+24) <sup>(7)</sup>                                    | QM Interrupt for Queue 728+n8             |
| 52              | TSIP0_RFSINT[n] <sup>(5)</sup>                                       | TSIP0 receive frame sync interrupt        |
|                 | TSIPO_RFSINT[n] <sup>(5)</sup>                                       | · · ·                                     |
| 53              | TSIP0_KSFINT[n] <sup>(5)</sup>                                       | TSIP0 receive super frame interrupt       |
| 54              | — — — — — — — — — — — — — — — — — — — —                              | TSIP0 transmit frame sync interrupt       |
| 55              | TSIP0_XSFINT[n] <sup>(5)</sup>                                       | TSIP0 transmit super frame interrupt      |
| 56              | TSIP1_RFSINT[n] <sup>(5)</sup>                                       | TSIP1 receive frame sync interrupt        |



| Event           INT[n] <sup>(5)</sup> INT[n] <sup>(5)</sup> INT[n] <sup>(5)</sup> (2+8*n)           (3+8*n) | Description         TSIP1 receive super frame interrupt         TSIP1 transmit frame sync interrupt         TSIP1 transmit super frame interrupt         Interrupt Controller Output         Interrupt Controller Output         Local timer interrupt low |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INT[n] <sup>(5)</sup><br>INT[n] <sup>(5)</sup><br>(2+8*n)                                                   | TSIP1 transmit frame sync interrupt TSIP1 transmit super frame interrupt Interrupt Controller Output Interrupt Controller Output                                                                                                                           |
| INT[n] <sup>(5)</sup><br>(2+8*n)                                                                            | TSIP1 transmit super frame interrupt Interrupt Controller Output Interrupt Controller Output                                                                                                                                                               |
| (2+8*n)                                                                                                     | Interrupt Controller Output<br>Interrupt Controller Output                                                                                                                                                                                                 |
|                                                                                                             | Interrupt Controller Output                                                                                                                                                                                                                                |
|                                                                                                             | Interrupt Controller Output                                                                                                                                                                                                                                |
|                                                                                                             | Interrupt Controller Output                                                                                                                                                                                                                                |
| (3+8*n)                                                                                                     |                                                                                                                                                                                                                                                            |
|                                                                                                             | Local timer interrupt low                                                                                                                                                                                                                                  |
|                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                      |
|                                                                                                             | Local timer interrupt high                                                                                                                                                                                                                                 |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Timer interrupt low                                                                                                                                                                                                                                        |
|                                                                                                             | Timer interrupt high                                                                                                                                                                                                                                       |
|                                                                                                             | Local GPIO interrupt                                                                                                                                                                                                                                       |
| L                                                                                                           | Inter DSP interrupt from IPCGRn                                                                                                                                                                                                                            |
| (4+8*n)                                                                                                     | Interrupt Controller Output                                                                                                                                                                                                                                |
| (5+8*n)                                                                                                     | Interrupt Controller Output                                                                                                                                                                                                                                |
| (6+8*n)                                                                                                     | Interrupt Controller Output                                                                                                                                                                                                                                |
| (7+8*n)                                                                                                     | Interrupt Controller Output                                                                                                                                                                                                                                |
|                                                                                                             | Dropped CPU interrupt event                                                                                                                                                                                                                                |
| AERR                                                                                                        | Invalid IDMA parameters                                                                                                                                                                                                                                    |
|                                                                                                             |                                                                                                                                                                                                                                                            |
|                                                                                                             |                                                                                                                                                                                                                                                            |
|                                                                                                             | EFI Interrupt from side A                                                                                                                                                                                                                                  |
|                                                                                                             | L<br>(4+8*n)<br>(5+8*n)<br>(6+8*n)<br>(7+8*n)<br>(7+8*n)<br>(7+8*n)                                                                                                                                                                                        |

Figure 7-32 TMS320C6672 System Event Inputs — C66x CorePac Primary Interrupts (Part 3 of 4)





#### Figure 7-32 TMS320C6672 System Event Inputs — C66x CorePac Primary Interrupts (Part 4 of 4)

| rigure 7-52 TM5520C0072 System Event inputs — Coox Corerac Primary interrupts (Part 4 014) |                        |                                           |
|--------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|
| Input Event Number                                                                         | Interrupt Event        | Description                               |
| 101                                                                                        | EFIINTB                | EFI Interrupt from side B                 |
| 102                                                                                        | CIC0_OUT0              | Interrupt Controller Output               |
| 103                                                                                        | CIC0_OUT1              | Interrupt Controller Output               |
| 104                                                                                        | CIC0_OUT8              | Interrupt Controller Output               |
| 105                                                                                        | CIC0_OUT9              | Interrupt Controller Output               |
| 106                                                                                        | CIC0_OUT16             | Interrupt Controller Output               |
| 107                                                                                        | CIC0_OUT17             | Interrupt Controller Output               |
| 108                                                                                        | CIC0_OUT24             | Interrupt Controller Output               |
| 109                                                                                        | CIC0_OUT25             | Interrupt Controller Output               |
| 110                                                                                        | MDMAERREVT             | VbusM error event                         |
| 111                                                                                        | Reserved               |                                           |
| 112                                                                                        | EDMA3CC0_EDMACC_AETEVT | EDMA3CC0 AET event                        |
| 113                                                                                        | PMC_ED                 | Single bit error detected during DMA read |
| 114                                                                                        | EDMA3CC1_EDMACC_AETEVT | EDMA3CC1 AET Event                        |
| 115                                                                                        | EDMA3CC2_EDMACC_AETEVT | EDMA3CC2 AET Event                        |
| 116                                                                                        | UMC_ED1                | Corrected bit error detected              |
| 117                                                                                        | UMC_ED2                | Uncorrected bit error detected            |
| 118                                                                                        | PDC_INT                | Power down sleep interrupt                |
| 119                                                                                        | SYS_CMPA               | SYS CPU memory protection fault event     |
| 120                                                                                        | PMC_CMPA               | PMC CPU memory protection fault event     |
| 121                                                                                        | PMC_DMPA               | PMC DMA memory protection fault event     |
| 122                                                                                        | DMC_CMPA               | DMC CPU memory protection fault event     |
| 123                                                                                        | DMC_DMPA               | DMC DMA memory protection fault event     |
| 124                                                                                        | UMC_CMPA               | UMC CPU memory protection fault event     |
| 125                                                                                        | UMC_DMPA               | UMC DMA memory protection fault event     |
| 126                                                                                        | EMC_CMPA               | EMC CPU memory protection fault event     |
| 127                                                                                        | EMC_BUSERR             | EMC bus error interrupt                   |
| End of Table 7-37                                                                          |                        |                                           |

1 CorePac[n] will receive TETBHFULLINTn, TETBFULLINTn, TETBACQINTn, TETBOVFLINTn, and TETBUNFLINTn.

2 CorePac[n] will receive MSMC\_mpf\_errorn.CIC.

3 CorePac[n] will receive SEMINTn and SEMERRn.

4 CorePac[n] will receive PCIEXpress\_MSI\_INTn.

5 CorePac[n] will receive TSIPx\_xxx[n].

6 CorePac[n] will receive INTDST(n+16).

7 n is core number.

8 CorePac[n] will receive TINTLn and TINTHn.

9 CorePac[n] will receive GPINTn.

#### Table 7-38 CICO Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 1 of 5)

| Input Event# on CIC | System Interrupt    | Description                          |
|---------------------|---------------------|--------------------------------------|
| 0                   | EDMA3CC1 CC_ERRINT  | EDMA3CC1 error interrupt             |
| 1                   | EDMA3CC1 CC_MPINT   | EDMA3CC1 memory protection interrupt |
| 2                   | EDMA3CC1 TC_ERRINT0 | EDMA3CC1 TC0 error interrupt         |
| 3                   | EDMA3CC1 TC_ERRINT1 | EDMA3CC1 TC1 error interrupt         |
| 4                   | EDMA3CC1 TC_ERRINT2 | EDMA3CC1 TC2 error interrupt         |
| 5                   | EDMA3CC1 TC_ERRINT3 | EDMA3CC1 TC3 error interrupt         |



| Input Event# on CIC | System Interrupt        | Description                              |
|---------------------|-------------------------|------------------------------------------|
| 6                   | EDMA3CC1 CC_GINT        | EDMA3CC1 GINT                            |
| 7                   | Reserved                |                                          |
| 8                   | EDMA3CC1 CCINT0         | EDMA3CC1 individual completion interrupt |
| 9                   | EDMA3CC1 CCINT1         | EDMA3CC1 individual completion interrupt |
| 10                  | EDMA3CC1 CCINT2         | EDMA3CC1 individual completion interrupt |
| 11                  | EDMA3CC1 CCINT3         | EDMA3CC1 individual completion interrupt |
| 12                  | EDMA3CC1 CCINT4         | EDMA3CC1 individual completion interrupt |
| 13                  | EDMA3CC1 CCINT5         | EDMA3CC1 individual completion interrupt |
| 14                  | EDMA3CC1 CCINT6         | EDMA3CC1 individual completion interrupt |
| 15                  | EDMA3CC1 CCINT7         | EDMA3CC1 individual completion interrupt |
| 16                  | EDMA3CC2 CC_ERRINT      | EDMA3CC2 error interrupt                 |
| 17                  | EDMA3CC2 CC_MPINT       | EDMA3CC2 memory protection interrupt     |
| 18                  | EDMA3CC2 TC_ERRINT0     | EDMA3CC2 TC0 error interrupt             |
| 19                  | EDMA3CC2 TC_ERRINT1     | EDMA3CC2 TC1 error interrupt             |
| 20                  | EDMA3CC2 TC_ERRINT2     | EDMA3CC2 TC2 error interrupt             |
| 21                  | EDMA3CC2 TC_ERRINT3     | EDMA3CC2 TC3 error interrupt             |
| 22                  | EDMA3CC2 CC_GINT        | EDMA3CC2 GINT                            |
| 23                  | Reserved                |                                          |
| 24                  | EDMA3CC2 CCINT0         | EDMA3CC2 individual completion interrupt |
| 25                  | EDMA3CC2 CCINT1         | EDMA3CC2 individual completion interrupt |
| 26                  | EDMA3CC2 CCINT2         | EDMA3CC2 individual completion interrupt |
| 27                  | EDMA3CC2 CCINT3         | EDMA3CC2 individual completion interrupt |
| 28                  | EDMA3CC2 CCINT4         | EDMA3CC2 individual completion interrupt |
| 29                  | EDMA3CC2 CCINT5         | EDMA3CC2 individual completion interrupt |
| 30                  | EDMA3CC2 CCINT6         | EDMA3CC2 individual completion interrupt |
| 31                  | EDMA3CC2 CCINT7         | EDMA3CC2 individual completion interrupt |
| 32                  | EDMA3CC0 CC_ERRINT      | EDMA3CC0 error interrupt                 |
| 33                  | EDMA3CC0 CC_MPINT       | EDMA3CC0 memory protection interrupt     |
| 34                  | EDMA3CC0 TC_ERRINT0     | EDMA3CC0 TC0 error interrupt             |
| 35                  | EDMA3CC0 TC_ERRINT1     | EDMA3CC0 TC1 error interrupt             |
| 36                  | EDMA3CC0 CC_GINT        | EDMA3CC0 GINT                            |
| 37                  | Reserved                |                                          |
| 38                  | EDMA3CC0 CCINT0         | EDMA3CC0 individual completion interrupt |
| 39                  | EDMA3CC0 CCINT1         | EDMA3CC0 individual completion interrupt |
| 40                  | EDMA3CC0 CCINT2         | EDMA3CC0 individual completion interrupt |
| 41                  | EDMA3CC0 CCINT3         | EDMA3CC0 individual completion interrupt |
| 42                  | EDMA3CC0 CCINT4         | EDMA3CC0 individual completion interrupt |
| 43                  | EDMA3CC0 CCINT5         | EDMA3CC0 individual completion interrupt |
| 44                  | EDMA3CC0 CCINT6         | EDMA3CC0 individual completion interrupt |
| 45                  | EDMA3CC0 CCINT7         | EDMA3CC0 individual completion interrupt |
| 46                  | Reserved                |                                          |
| 47                  | QM_INT_PASS_TXQ_PEND_12 | Queue manager pend event                 |
| 48                  | PCIEXpress_ERR_INT      | Protocol error interrupt                 |

#### Table 7-38 CICO Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 2 of 5)

SPRS708E—March 2014



#### Table 7-38 CICO Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 3 of 5)

| Input Event# on CIC | System Interrupt                                                | Description                                                                                 |
|---------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 49                  | PCIEXpress_PM_INT                                               | Power management interrupt                                                                  |
| 50                  | PCIEXpress_Legacy_INTA                                          | Legacy interrupt mode                                                                       |
| 51                  | PCIEXpress_Legacy_INTB                                          | Legacy interrupt mode                                                                       |
| 52                  | PCIEXpress_Legacy_INTC                                          | Legacy interrupt mode                                                                       |
| 53                  | PCIEXpress_Legacy_INTD                                          | Legacy interrupt mode                                                                       |
| 54                  | SPIINTO                                                         | SPI interrupt0                                                                              |
| 55                  | SPIINT1                                                         | SPI interrupt1                                                                              |
| 56                  | SPIXEVT                                                         | Transmit event                                                                              |
| 57                  | SPIREVT                                                         | Receive event                                                                               |
| 58                  | I2CINT                                                          | l <sup>2</sup> C interrupt                                                                  |
| 59                  | I2CREVT                                                         | I <sup>2</sup> C receive event                                                              |
| 60                  | I2CXEVT                                                         | I <sup>2</sup> C transmit event                                                             |
| 61                  | Reserved                                                        |                                                                                             |
| 62                  | Reserved                                                        |                                                                                             |
| 63                  | TETBHFULLINT                                                    | TETB is half full                                                                           |
| 64                  | TETBFULLINT                                                     | TETB is full                                                                                |
| 65                  | TETBACQINT                                                      | Acquisition has been completed                                                              |
| 66                  | TETBOVFLINT                                                     | Overflow condition occur                                                                    |
| 67                  | TETBUNFLINT                                                     | Underflow condition occur                                                                   |
| 68                  | MDIO_LINK_INTR0                                                 | Network coprocessor MDIO interrupt                                                          |
| 69                  | MDIO_LINK_INTR1                                                 | Network coprocessor MDIO interrupt                                                          |
| 70                  | MDIO_USER_INTR0                                                 | Network coprocessor MDIO interrupt                                                          |
| 71                  | MDIO_USER_INTR1                                                 | Network coprocessor MDIO interrupt                                                          |
| 72                  | MISC_INTR                                                       | Network coprocessor MISC interrupt                                                          |
| 73                  | TRACER_CORE_0_INTD                                              | Tracer sliding time window interrupt for individual core                                    |
| 74                  | TRACER_CORE_1_INTD                                              | Tracer sliding time window interrupt for individual core                                    |
| 75                  | Reserved                                                        |                                                                                             |
| 76                  | Reserved                                                        |                                                                                             |
| 77                  | TRACER_DDR_INTD                                                 | Tracer sliding time window interrupt for DDR3 EMIF1                                         |
| 78                  | TRACER_MSMC_0_INTD                                              | Tracer sliding time window interrupt for MSMC SRAM bank0                                    |
| 79                  | TRACER_MSMC_1_INTD                                              | Tracer sliding time window interrupt for MSMC SRAM bank1                                    |
| 80                  | TRACER_MSMC_2_INTD                                              | Tracer sliding time window interrupt for MSMC SRAM bank?                                    |
| 81                  | TRACER_MSMC_3_INTD                                              | Tracer sliding time window interrupt for MSMC SRAM bank2                                    |
| 81                  | TRACER_CFG_INTD                                                 | Tracer sliding time window interrupt for CFG0 TeraNet                                       |
| 82                  | TRACER_QM_CFG_INTD                                              | Tracer sliding time window interrupt for QM_SS CFG                                          |
| 84                  | TRACER_QM_DMA_INTD                                              | Tracer sliding time window interrupt for QM_SS slave                                        |
| 85                  | TRACER_QMI_DMA_INTD                                             | Tracer sliding time window interrupt for semaphore                                          |
| 86                  | PSC_ALLINT                                                      | Power/sleep controller interrupt                                                            |
|                     |                                                                 |                                                                                             |
| 87<br>88            | MSMC_SCRUB_CERROR                                               | Correctable (1-bit) soft error detected during scrub cycle<br>Chip-level MMR error register |
|                     | BOOTCFG_INTD                                                    |                                                                                             |
| 89                  | Reserved                                                        | MDLIO addrogging violation intermentand exect attended with the fortune                     |
| 90                  | MPU0_INTD (MPU0_ADDR_ERR_INT and<br>MPU0_PROT_ERR_INT combined) | MPU0 addressing violation interrupt and protection violation interrupt.                     |
| 91                  | QM_INT_PASS_TXQ_PEND_13                                         | Queue manager pend event                                                                    |



| Input Event# on CIC | System Interrupt                                             | Description                                                             |
|---------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| 92                  | MPU1_INTD (MPU1_ADDR_ERR_INT and MPU1_PROT_ERR_INT combined) | MPU1 addressing violation interrupt and protection violation interrupt. |
| 93                  | QM_INT_PASS_TXQ_PEND_14                                      | Queue manager pend event                                                |
| 94                  | MPU2_INTD (MPU2_ADDR_ERR_INT and MPU2_PROT_ERR_INT combined) | MPU2 addressing violation interrupt and protection violation interrupt. |
| 95                  | QM_INT_PASS_TXQ_PEND_15                                      | Queue manager pend event                                                |
| 96                  | MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3_PROT_ERR_INT combined) | MPU3 addressing violation interrupt and protection violation interrupt. |
| 97                  | QM_INT_PASS_TXQ_PEND_16                                      | Queue manager pend event                                                |
| 98                  | MSMC_dedc_cerror                                             | Correctable (1-bit) soft error detected on SRAM read                    |
| 99                  | MSMC_dedc_nc_error                                           | Non-correctable (2-bit) soft error detected on SRAM read                |
| 100                 | MSMC_scrub_nc_error                                          | Non-correctable (2-bit) soft error detected during scrub cycle          |
| 101                 | Reserved                                                     |                                                                         |
| 102                 | MSMC_mpf_error8                                              | Memory protection fault indicators for each system master PrivID        |
| 103                 | MSMC_mpf_error9                                              | Memory protection fault indicators for each system master PrivID        |
| 104                 | MSMC_mpf_error10                                             | Memory protection fault indicators for each system master PrivID        |
| 105                 | MSMC_mpf_error11                                             | Memory protection fault indicators for each system master PrivID        |
| 105                 | MSMC_mpf_error12                                             | Memory protection fault indicators for each system master PrivID        |
| 107                 | MSMC_mpf_error13                                             | Memory protection fault indicators for each system master PrivID        |
| 108                 | MSMC_mpf_error14                                             | Memory protection fault indicators for each system master PrivID        |
| 109                 | MSMC_mpf_error15                                             | Memory protection fault indicators for each system master PrivID        |
| 110                 | DDR3_ERR                                                     | DDR3 EMIF error interrupt                                               |
| 111                 | VUSR_INT_O                                                   | HyperLink interrupt                                                     |
| 112                 | INTDST0                                                      | RapidIO interrupt                                                       |
| 113                 | INTDST1                                                      | RapidlO interrupt                                                       |
| 114                 | INTDST2                                                      | RapidIO interrupt                                                       |
| 115                 | INTDST3                                                      | RapidIO interrupt                                                       |
| 116                 | INTDST4                                                      | RapidIO interrupt                                                       |
| 117                 | INTDST5                                                      | RapidIO interrupt                                                       |
| 118                 | INTDST6                                                      | RapidIO interrupt                                                       |
| 119                 | INTDST7                                                      | RapidIO interrupt                                                       |
| 120                 | INTDST8                                                      | RapidIO interrupt                                                       |
| 121                 | INTDST9                                                      | RapidIO interrupt                                                       |
| 122                 | INTDST10                                                     | RapidIO interrupt                                                       |
| 123                 | INTDST11                                                     | RapidIO interrupt                                                       |
| 124                 | INTDST12                                                     | RapidIO interrupt                                                       |
| 125                 | INTDST13                                                     | RapidIO interrupt                                                       |
| 126                 | INTDST14                                                     | RapidIO interrupt                                                       |
| 127                 | INTDST15                                                     | RapidIO interrupt                                                       |
| 128                 | EASYNCERR                                                    | EMIF16 error interrupt                                                  |
| 129                 | Reserved                                                     |                                                                         |
| 130                 | Reserved                                                     |                                                                         |
| 131                 | Reserved                                                     |                                                                         |
| 132                 | Reserved                                                     |                                                                         |

#### Table 7-38CICO Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 4 of 5)

SPRS708E—March 2014



| Input Event# on CIC | System Interrupt        | Description                                                                                  |  |
|---------------------|-------------------------|----------------------------------------------------------------------------------------------|--|
| 133                 | QM_INT_PKTDMA_0         | Queue manager Interrupt for packet DMA starvation                                            |  |
| 134                 | QM_INT_PKTDMA_1         | Queue manager Interrupt for packet DMA starvation                                            |  |
| 135                 | RapidIO_INT_PKTDMA_0    | RapidIO Interrupt for packet DMA starvation                                                  |  |
| 136                 | PASS_INT_PKTDMA_0       | Network coprocessor Interrupt for packet DMA starvation                                      |  |
| 137                 | SmartReflex_intrreq0    | SmartReflex sensor interrupt                                                                 |  |
| 138                 | SmartReflex_intrreq1    | SmartReflex sensor interrupt                                                                 |  |
| 139                 | SmartReflex_intrreq2    | SmartReflex sensor interrupt                                                                 |  |
| 140                 | SmartReflex_intrreq3    | SmartReflex sensor interrupt                                                                 |  |
| 141                 | VPNoSMPSAck             | VPVOLTUPDATE has been asserted but SMPS has not been responded to in a defined time interval |  |
| 142                 | VPEqValue               | SRSINTERUPTZ is asserted, but the new voltage is not different from the current SMPS voltage |  |
| 143                 | VPMaxVdd                | The new voltage required is equal to or greater than MaxVdd.                                 |  |
| 144                 | VPMinVdd                | The new voltage required is equal to or less than MinVdd.                                    |  |
| 145                 | VPINIDLE                | The FSM of Voltage processor is in idle.                                                     |  |
| 146                 | VPOPPChangeDone         | The average frequency error is within the desired limit.                                     |  |
| 147                 | Reserved                |                                                                                              |  |
| 148                 | UARTINT                 | UART interrupt                                                                               |  |
| 149                 | URXEVT                  | UART receive event                                                                           |  |
| 150                 | UTXEVT                  | UART transmit event                                                                          |  |
| 151                 | QM_INT_PASS_TXQ_PEND_17 | Queue manager pend event                                                                     |  |
| 152                 | QM_INT_PASS_TXQ_PEND_18 | Queue manager pend event                                                                     |  |
| 153                 | QM_INT_PASS_TXQ_PEND_19 | Queue manager pend event                                                                     |  |
| 154                 | QM_INT_PASS_TXQ_PEND_20 | Queue manager pend event                                                                     |  |
| 155                 | QM_INT_PASS_TXQ_PEND_21 | Queue manager pend event                                                                     |  |
| 156                 | QM_INT_PASS_TXQ_PEND_22 | Queue manager pend event                                                                     |  |
| 157                 | QM_INT_PASS_TXQ_PEND_23 | Queue manager pend event                                                                     |  |
| 158                 | QM_INT_PASS_TXQ_PEND_24 | PEND_24 Queue manager pend event                                                             |  |
| 159                 | QM_INT_PASS_TXQ_PEND_25 | Queue manager pend event                                                                     |  |
| End of Table 7-38   |                         |                                                                                              |  |

#### Table 7-38 CICO Event Inputs (Secondary Interrupts for C66x CorePacs) (Part 5 of 5)

| Table 7-39 | CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 1 of 5) |
|------------|------------------------------------------------------------------------------|
|------------|------------------------------------------------------------------------------|

| Input Event # on CIC | System Interrupt | Description                                |
|----------------------|------------------|--------------------------------------------|
| 0                    | GPINT8           | GPIO interrupt                             |
| 1                    | GPINT9           | GPIO interrupt                             |
| 2                    | GPINT10          | GPIO interrupt                             |
| 3                    | GPINT11          | GPIO interrupt                             |
| 4                    | GPINT12          | GPIO interrupt                             |
| 5                    | GPINT13          | GPIO interrupt                             |
| 6                    | GPINT14          | GPIO interrupt                             |
| 7                    | GPINT15          | GPIO interrupt                             |
| 8                    | TETBHFULLINT     | System TETB is half full                   |
| 9                    | TETBFULLINT      | System TETB is full                        |
| 10                   | TETBACQINT       | System TETB acquisition has been completed |



| Fable 7-39       CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 2 of 5) |                    |                                                          |
|-----------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------|
| Input Event # on CIC                                                                          | System Interrupt   | Description                                              |
| 11                                                                                            | TETBHFULLINTO      | TETB0 is half full                                       |
| 12                                                                                            | TETBFULLINTO       | TETBO is full                                            |
| 13                                                                                            | TETBACQINTO        | TETB0 acquisition has been completed                     |
| 14                                                                                            | TETBHFULLINT1      | TETB1 is half full                                       |
| 15                                                                                            | TETBFULLINT1       | TETB1 is full                                            |
| 16                                                                                            | TETBACQINT1        | TETB1 acquisition has been completed                     |
| 17                                                                                            | Reserved           |                                                          |
| 18                                                                                            | Reserved           |                                                          |
| 19                                                                                            | Reserved           |                                                          |
| 20                                                                                            | Reserved           |                                                          |
| 21                                                                                            | Reserved           |                                                          |
| 22                                                                                            | Reserved           |                                                          |
| 23                                                                                            | Reserved           |                                                          |
| 24                                                                                            | QM_INT_HIGH_16     | QM interrupt                                             |
| 25                                                                                            | QM_INT_HIGH_17     | QM interrupt                                             |
| 26                                                                                            | QM_INT_HIGH_18     | QM interrupt                                             |
| 27                                                                                            | QM_INT_HIGH_19     | QM interrupt                                             |
| 28                                                                                            | QM_INT_HIGH_20     | QM interrupt                                             |
| 29                                                                                            | QM_INT_HIGH_21     | QM interrupt                                             |
| 30                                                                                            | QM_INT_HIGH_22     | QM interrupt                                             |
| 31                                                                                            | QM_INT_HIGH_23     | QM interrupt                                             |
| 32                                                                                            | QM_INT_HIGH_24     | QM interrupt                                             |
| 33                                                                                            | QM_INT_HIGH_25     | QM interrupt                                             |
| 34                                                                                            | QM_INT_HIGH_26     | QM interrupt                                             |
| 35                                                                                            | QM_INT_HIGH_27     | QM interrupt                                             |
| 36                                                                                            | QM_INT_HIGH_28     | QM interrupt                                             |
| 37                                                                                            | QM_INT_HIGH_29     | QM interrupt                                             |
| 38                                                                                            | QM_INT_HIGH_30     | QM interrupt                                             |
| 39                                                                                            | QM_INT_HIGH_31     | QM interrupt                                             |
| 40                                                                                            | MDIO_LINK_INTRO    | Network coprocessor MDIO interrupt                       |
| 41                                                                                            | MDIO_LINK_INTR1    | Network coprocessor MDIO interrupt                       |
| 42                                                                                            | MDIO_USER_INTRO    | Network coprocessor MDIO interrupt                       |
| 43                                                                                            | MDIO_USER_INTRO    | Network coprocessor MDIO interrupt                       |
| 44                                                                                            | MISC_INTR          | Network coprocessor MISC interrupt                       |
| 45                                                                                            | TRACER_CORE_0_INTD | Tracer sliding time window interrupt for individual core |
| 46                                                                                            | TRACER_CORE_1_INTD | Tracer sliding time window interrupt for individual core |
| 47                                                                                            | Reserved           |                                                          |
| 48                                                                                            | Reserved           |                                                          |
| 49                                                                                            | TRACER_DDR_INTD    | Tracer sliding time window interrupt for DDR3 EMIF       |
| 50                                                                                            | TRACER_MSMC_0_INTD | Tracer sliding time window interrupt for MSMC SRAM bank0 |
| 51                                                                                            | TRACER_MSMC_1_INTD | Tracer sliding time window interrupt for MSMC SRAM bank1 |
| 52                                                                                            | TRACER_MSMC_1_INTD | Tracer sliding time window interrupt for MSMC SRAM bank? |
| 53                                                                                            |                    | Tracer sliding time window interrupt for MSMC SRAM bank2 |
|                                                                                               |                    |                                                          |
| 54                                                                                            | TRACER_CFG_INTD    | Tracer sliding time window interrupt for CFG0 TeraNet    |

#### Table 7-39 CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 2 of 5)

SPRS708E—March 2014



| Table 7-39 | CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 3 of 5) |
|------------|------------------------------------------------------------------------------|
|------------|------------------------------------------------------------------------------|

| Input Event # on CIC | System Interrupt                                                      | Description                                                             |  |
|----------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| 55                   | TRACER_QM_CFG_INTD                                                    | Tracer sliding time window interrupt for QM_SS CFG                      |  |
| 56                   | TRACER_QM_DMA_INTD                                                    | Tracer sliding time window interrupt for QM_SS slave port               |  |
| 57                   | TRACER_SM_INTD                                                        | Tracer sliding time window interrupt for semaphore                      |  |
| 58                   | SEMERRO                                                               | Semaphore interrupt                                                     |  |
| 59                   | SEMERR1                                                               | Semaphore interrupt                                                     |  |
| 60                   | Reserved                                                              |                                                                         |  |
| 61                   | Reserved                                                              |                                                                         |  |
| 62                   | BOOTCFG_INTD                                                          | BOOTCFG interrupt BOOTCFG_ERR and BOOTCFG_PROT                          |  |
| 63                   | PASS_INT_PKTDMA_0                                                     | Network coprocessor interrupt for packet DMA starvation                 |  |
| 64                   | MPU0_INTD (MPU0_ADDR_ERR_INT and<br>MPU0_PROT_ERR_INT combined)       | MPU0 addressing violation interrupt and protection violation interrupt. |  |
| 65                   | MSMC_scrub_cerror                                                     | Correctable (1-bit) soft error detected during scrub cycle              |  |
| 66                   | MPU1_INTD (MPU1_ADDR_ERR_INT and<br>MPU1_PROT_ERR_INT combined)       | MPU1 addressing violation interrupt and protection violation interrupt. |  |
| 67                   | RapidIO_INT_PKTDMA_0                                                  | RapidIO interrupt for packet DMA starvation                             |  |
| 68                   | MPU2_INTD (MPU2_ADDR_ERR_INT and<br>MPU2_PROT_ERR_INT combined)       | MPU2 addressing violation interrupt and protection violation interrupt. |  |
| 69                   | QM_INT_PKTDMA_0                                                       | QM interrupt for packet DMA starvation                                  |  |
| 70                   | MPU3_INTD (MPU3_ADDR_ERR_INT and MPU3_PROT_ERR_INT combined)          | MPU3 addressing violation interrupt and protection violation interrupt. |  |
| 71                   | QM_INT_PKTDMA_1                                                       | QM interrupt for packet DMA starvation                                  |  |
| 72                   | MSMC_dedc_cerror                                                      | Correctable (1-bit) soft error detected on SRAM read                    |  |
| 73                   | MSMC_dedc_nc_error                                                    | Non-correctable (2-bit) soft error detected on SRAM read                |  |
| 74                   | MSMC_scrub_nc_error                                                   | Non-correctable (2-bit) soft error detected during scrub cycle          |  |
| 75                   | Reserved                                                              |                                                                         |  |
| 76                   | MSMC_mpf_error0                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 77                   | MSMC_mpf_error1                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 78                   | MSMC_mpf_error2                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 79                   | MSMC_mpf_error3                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 80                   | MSMC_mpf_error4                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 81                   | MSMC_mpf_error5                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 82                   | MSMC_mpf_error6                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 83                   | MSMC_mpf_error7                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 84                   | MSMC_mpf_error8                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 85                   | MSMC_mpf_error9                                                       | Memory protection fault indicators for each system master PrivID        |  |
| 86                   | MSMC_mpf_error10                                                      | Memory protection fault indicators for each system master PrivID        |  |
| 87                   | MSMC_mpf_error11                                                      | Memory protection fault indicators for each system master PrivID        |  |
| 88                   | MSMC_mpf_error12                                                      | Memory protection fault indicators for each system master PrivID        |  |
| 89                   | MSMC_mpf_error13                                                      | Memory protection fault indicators for each system master PrivID        |  |
| 90                   | MSMC_mpf_error14                                                      | Memory protection fault indicators for each system master PrivID        |  |
| 91                   | MSMC_mpf_error15 Memory protection fault indicators for each system m |                                                                         |  |
| 92                   | Reserved                                                              |                                                                         |  |
| 93                   | INTDST0                                                               | RapidIO interrupt                                                       |  |
| 94                   | INTDST1 RapidIO interrupt                                             |                                                                         |  |
| 95                   | INTDST2                                                               | RapidlO interrupt                                                       |  |



| Input Event # on CIC | System Interrupt | Description            |
|----------------------|------------------|------------------------|
| 96                   | INTDST3          | RapidIO interrupt      |
| 97                   | INTDST4          | RapidIO interrupt      |
| 98                   | INTDST5          | RapidIO interrupt      |
| 99                   | INTDST6          | RapidIO interrupt      |
| 100                  | INTDST7          | RapidIO interrupt      |
| 101                  | INTDST8          | RapidIO interrupt      |
| 102                  | INTDST9          | RapidIO interrupt      |
| 103                  | INTDST10         | RapidIO interrupt      |
| 104                  | INTDST11         | RapidIO interrupt      |
| 105                  | INTDST12         | RapidIO interrupt      |
| 106                  | INTDST13         | RapidIO interrupt      |
| 107                  | INTDST14         | RapidIO interrupt      |
| 108                  | INTDST15         | RapidIO interrupt      |
| 109                  | INTDST16         | RapidIO interrupt      |
| 110                  | INTDST17         | RapidIO interrupt      |
| 111                  | INTDST18         | RapidIO interrupt      |
| 112                  | INTDST19         | RapidIO interrupt      |
| 113                  | INTDST20         | RapidIO interrupt      |
| 114                  | INTDST21         | RapidIO interrupt      |
| 115                  | INTDST22         | RapidIO interrupt      |
| 116                  | INTDST23         | RapidIO interrupt      |
| 117                  | EASYNCERR        | EMIF16 error interrupt |
| 118                  | Reserved         |                        |
| 119                  | Reserved         |                        |
| 120                  | Reserved         |                        |
| 121                  | Reserved         |                        |
| 122                  | Reserved         |                        |
| 123                  | Reserved         |                        |
| 124                  | Reserved         |                        |
| 125                  | Reserved         |                        |
| 126                  | Reserved         |                        |
| 127                  | Reserved         |                        |
| 128                  | Reserved         |                        |
| 129                  | Reserved         |                        |
| 130                  | Reserved         |                        |
| 131                  | Reserved         |                        |
| 132                  | Reserved         |                        |
| 133                  | Reserved         |                        |
| 134                  | Reserved         |                        |
| 135                  | Reserved         |                        |
| 136                  | Reserved         |                        |
| 137                  | Reserved         |                        |
| 138                  | QM_INT_HIGH_0    | QM interrupt           |
| 139                  | QM_INT_HIGH_1    | QM interrupt           |

 Table 7-39
 CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 4 of 5)





#### Table 7-39 CIC2 Event Inputs (Secondary Events for EDMA3CC1 and EDMA3CC2) (Part 5 of 5)

| Input Event # on CIC | System Interrupt  | Description  |
|----------------------|-------------------|--------------|
| 140                  | QM_INT_HIGH_2     | QM interrupt |
| 141                  | QM_INT_HIGH_3     | QM interrupt |
| 142                  | QM_INT_HIGH_4     | QM interrupt |
| 143                  | QM_INT_HIGH_5     | QM interrupt |
| 144                  | QM_INT_HIGH_6     | QM interrupt |
| 145                  | QM_INT_HIGH_7     | QM interrupt |
| 146                  | QM_INT_HIGH_8     | QM interrupt |
| 147                  | QM_INT_HIGH_9     | QM interrupt |
| 148                  | QM_INT_HIGH_10    | QM interrupt |
| 149                  | QM_INT_HIGH_11    | QM interrupt |
| 150                  | QM_INT_HIGH_12    | QM interrupt |
| 151                  | QM_INT_HIGH_13    | QM interrupt |
| 152                  | QM_INT_HIGH_14    | QM interrupt |
| 153                  | QM_INT_HIGH_15    | QM interrupt |
| 154-159              | Reserved          |              |
| End of Table 7-39    | End of Table 7-39 |              |

#### Table 7-40 CIC3 Event Inputs (Secondary Events for EDMA3CC0 and HyperLink) (Part 1 of 2)

| Input Event # on CIC | System Interrupt     | Description                                |
|----------------------|----------------------|--------------------------------------------|
| 0                    | GPINT0               | GPIO interrupt                             |
| 1                    | GPINT1               | GPIO interrupt                             |
| 2                    | GPINT2               | GPIO interrupt                             |
| 3                    | GPINT3               | GPIO interrupt                             |
| 4                    | GPINT4               | GPIO interrupt                             |
| 5                    | GPINT5               | GPIO interrupt                             |
| 6                    | GPINT6               | GPIO interrupt                             |
| 7                    | GPINT7               | GPIO interrupt                             |
| 8                    | GPINT8               | GPIO interrupt                             |
| 9                    | GPINT9               | GPIO interrupt                             |
| 10                   | GPINT10              | GPIO interrupt                             |
| 11                   | GPINT11              | GPIO interrupt                             |
| 12                   | GPINT12              | GPIO interrupt                             |
| 13                   | GPINT13              | GPIO interrupt                             |
| 14                   | GPINT14              | GPIO interrupt                             |
| 15                   | GPINT15              | GPIO interrupt                             |
| 16                   | TETBHFULLINT         | System TETB is half full                   |
| 17                   | TETBFULLINT          | System TETB is full                        |
| 18                   | TETBACQINT           | System TETB acquisition has been completed |
| 19                   | <b>TETBHFULLINT0</b> | TETB0 is half full                         |
| 20                   | TETBFULLINTO         | TETBO is full                              |
| 21                   | TETBACQINT0          | TETB0 acquisition has been completed       |
| 22                   | TETBHFULLINT1        | TETB1 is half full                         |
| 23                   | TETBFULLINT1         | TETB1 is full                              |



| Input Event # on CIC | System Interrupt   | Description                                               |
|----------------------|--------------------|-----------------------------------------------------------|
| 24                   | TETBACQINT1        | TETB1 acquisition has been completed                      |
| 25                   | Reserved           |                                                           |
| 26                   | Reserved           |                                                           |
| 27                   | Reserved           |                                                           |
| 28                   | Reserved           |                                                           |
| 29                   | Reserved           |                                                           |
| 30                   | Reserved           |                                                           |
| 31                   | TRACER_CORE_0_INTD | Tracer sliding time window interrupt for individual core  |
| 32                   | TRACER_CORE_1_INTD | Tracer sliding time window interrupt for individual core  |
| 33                   | Reserved           |                                                           |
| 34                   | Reserved           |                                                           |
| 35                   | TRACER_DDR_INTD    | Tracer sliding time window interrupt for DDR3 EMIF1       |
| 36                   | TRACER_MSMC_0_INTD | Tracer sliding time window interrupt for MSMC SRAM bank0  |
| 37                   | TRACER_MSMC_1_INTD | Tracer sliding time window interrupt for MSMC SRAM bank1  |
| 38                   | TRACER_MSMC_2_INTD | Tracer sliding time window interrupt for MSMC SRAM bank2  |
| 39                   | TRACER_MSMC_3_INTD | Tracer sliding time window interrupt for MSMC SRAM bank3  |
| 40                   | TRACER_CFG_INTD    | Tracer sliding time window interrupt for CFG0 TeraNet     |
| 41                   | TRACER_QM_CFG_INTD | Tracer sliding time window interrupt for QM_SS CFG        |
| 42                   | TRACER_QM_DMA_INTD | Tracer sliding time window interrupt for QM_SS slave port |
| 43                   | TRACER_SM_INTD     | Tracer sliding time window interrupt for semaphore        |
| 44                   | VUSR_INT_O         | HyperLink interrupt                                       |
| 45                   | Reserved           |                                                           |
| 46                   | Reserved           |                                                           |
| 47                   | Reserved           |                                                           |
| 48                   | Reserved           |                                                           |
| 49                   | Reserved           |                                                           |
| 50                   | Reserved           |                                                           |
| 51                   | Reserved           |                                                           |
| 52                   | Reserved           |                                                           |
| 53                   | Reserved           |                                                           |
| 54                   | Reserved           |                                                           |
| 55                   | Reserved           |                                                           |
| 56                   | Reserved           |                                                           |
| 57                   | Reserved           |                                                           |
| 58                   | Reserved           |                                                           |
| 59                   | Reserved           |                                                           |
| 60                   | Reserved           |                                                           |
| 61                   | DDR3_ERR           | DDR3 EMIF Error interrupt                                 |
| 62-79                | Reserved           |                                                           |
| End of Table 7-40    |                    |                                                           |

#### Table 7-40 CIC3 Event Inputs (Secondary Events for EDMA3CC0 and HyperLink) (Part 2 of 2)

### 7.10.2 CIC Registers

This section includes the offsets for CIC registers. The base addresses for interrupt control registers are CIC0 - 0x0260 0000, CIC2 - 0x0260 8000, and CIC3 - 0x0260 C000.





### 7.10.2.1 CIC0 Register Map

#### Table 7-41 **CIC0** Register

| Address Offset | Register Mnemonic         | Register Name                                 |
|----------------|---------------------------|-----------------------------------------------|
| 0x0            | REVISION_REG              | Revision Register                             |
| 0x10           | GLOBAL_ENABLE_HINT_REG    | Global Host Int Enable Register               |
| 0x20           | STATUS_SET_INDEX_REG      | Status Set Index Register                     |
| 0x24           | STATUS_CLR_INDEX_REG      | Status Clear Index Register                   |
| 0x28           | ENABLE_SET_INDEX_REG      | Enable Set Index Register                     |
| 0x2C           | ENABLE_CLR_INDEX_REG      | Enable Clear Index Register                   |
| 0x34           | HINT_ENABLE_SET_INDEX_REG | Host Int Enable Set Index Register            |
| 0x38           | HINT_ENABLE_CLR_INDEX_REG | Host Int Enable Clear Index Register          |
| 0x200          | RAW_STATUS_REG0           | Raw Status Register 0                         |
| 0x204          | RAW_STATUS_REG1           | Raw Status Register 1                         |
| 0x208          | RAW_STATUS_REG2           | Raw Status Register 2                         |
| 0x20C          | RAW_STATUS_REG3           | Raw Status Register 3                         |
| 0x210          | RAW_STATUS_REG4           | Raw Status Register 4                         |
| 0x280          | ENA_STATUS_REG0           | Enabled Status Register 0                     |
| 0x284          | ENA_STATUS_REG1           | Enabled Status Register 1                     |
| 0x288          | ENA_STATUS_REG2           | Enabled Status Register 2                     |
| 0x28c          | ENA_STATUS_REG3           | Enabled Status Register 3                     |
| 0x290          | ENA_STATUS_REG4           | Enabled Status Register 4                     |
| 0x300          | ENABLE_REG0               | Enable Register 0                             |
| 0x304          | ENABLE_REG1               | Enable Register 1                             |
| 0x308          | ENABLE_REG2               | Enable Register 2                             |
| 0x30c          | ENABLE_REG3               | Enable Register 3                             |
| 0x310          | ENABLE_REG4               | Enable Register 4                             |
| 0x380          | ENABLE_CLR_REG0           | Enable Clear Register 0                       |
| 0x384          | ENABLE_CLR_REG1           | Enable Clear Register 1                       |
| 0x388          | ENABLE_CLR_REG2           | Enable Clear Register 2                       |
| 0x38c          | ENABLE_CLR_REG3           | Enable Clear Register 3                       |
| 0x390          | ENABLE_CLR_REG4           | Enable Clear Register 4                       |
| 0x400          | CH_MAP_REG0               | Interrupt Channel Map Register for 0 to 0+3   |
| 0x404          | CH_MAP_REG1               | Interrupt Channel Map Register for 4 to 4+3   |
| 0x408          | CH_MAP_REG2               | Interrupt Channel Map Register for 8 to 8+3   |
| 0x40c          | CH_MAP_REG3               | Interrupt Channel Map Register for 12 to 12+3 |
| 0x410          | CH_MAP_REG4               | Interrupt Channel Map Register for 16 to 16+3 |
| 0x414          | CH_MAP_REG5               | Interrupt Channel Map Register for 20 to 20+3 |
| 0x418          | CH_MAP_REG6               | Interrupt Channel Map Register for 24 to 24+3 |
| 0x41c          | CH_MAP_REG7               | Interrupt Channel Map Register for 28 to 28+3 |
| 0x420          | CH_MAP_REG8               | Interrupt Channel Map Register for 32 to 32+3 |
| 0x424          | CH_MAP_REG9               | Interrupt Channel Map Register for 36 to 36+3 |
| 0x428          | CH_MAP_REG10              | Interrupt Channel Map Register for 40 to 40+3 |
| 0x42c          | CH_MAP_REG11              | Interrupt Channel Map Register for 44 to 44+3 |
| 0x430          | CH_MAP_REG12              | Interrupt Channel Map Register for 48 to 48+3 |
| 0x434          | CH_MAP_REG13              | Interrupt Channel Map Register for 52 to 52+3 |



#### Table 7-41 CIC0 Register

| Address Offset | Register Mnemonic | Register Name                                   |
|----------------|-------------------|-------------------------------------------------|
| 0x438          | CH_MAP_REG14      | Interrupt Channel Map Register for 56 to 56+3   |
| 0x43c          | CH_MAP_REG15      | Interrupt Channel Map Register for 60 to 60+3   |
| 0x440          | CH_MAP_REG16      | Interrupt Channel Map Register for 64 to 64+3   |
| 0x444          | CH_MAP_REG17      | Interrupt Channel Map Register for 68 to 68+3   |
| 0x448          | CH_MAP_REG18      | Interrupt Channel Map Register for 72 to 72+3   |
| 0x44c          | CH_MAP_REG19      | Interrupt Channel Map Register for 76 to 76+3   |
| 0x450          | CH_MAP_REG20      | Interrupt Channel Map Register for 80 to 80+3   |
| 0x454          | CH_MAP_REG21      | Interrupt Channel Map Register for 84 to 84+3   |
| 0x458          | CH_MAP_REG22      | Interrupt Channel Map Register for 88 to 88+3   |
| 0x45c          | CH_MAP_REG23      | Interrupt Channel Map Register for 92 to 92+3   |
| 0x460          | CH_MAP_REG24      | Interrupt Channel Map Register for 96 to 96+3   |
| 0x464          | CH_MAP_REG25      | Interrupt Channel Map Register for 100 to 100+3 |
| 0x468          | CH_MAP_REG26      | Interrupt Channel Map Register for 104 to 104+3 |
| 0x46c          | CH_MAP_REG27      | Interrupt Channel Map Register for 108 to 108+3 |
| 0x470          | CH_MAP_REG28      | Interrupt Channel Map Register for 112 to 112+3 |
| 0x474          | CH_MAP_REG29      | Interrupt Channel Map Register for 116 to 116+3 |
| 0x478          | CH_MAP_REG30      | Interrupt Channel Map Register for 120 to 120+3 |
| 0x47c          | CH_MAP_REG31      | Interrupt Channel Map Register for 124 to 124+3 |
| 0x480          | CH_MAP_REG32      | Interrupt Channel Map Register for 128 to 128+3 |
| 0x484          | CH_MAP_REG33      | Interrupt Channel Map Register for 132 to 132+3 |
| 0x488          | CH_MAP_REG34      | Interrupt Channel Map Register for 136 to 136+3 |
| 0x48c          | CH_MAP_REG35      | Interrupt Channel Map Register for 140 to 140+3 |
| 0x490          | CH_MAP_REG36      | Interrupt Channel Map Register for 144 to 144+3 |
| 0x494          | CH_MAP_REG37      | Interrupt Channel Map Register for 148 to 148+3 |
| 0x498          | CH_MAP_REG38      | Interrupt Channel Map Register for 152 to 152+3 |
| 0x49c          | CH_MAP_REG39      | Interrupt Channel Map Register for 156 to 156+3 |
| 0x800          | HINT_MAP_REG0     | Host Interrupt Map Register for 0 to 0+3        |
| 0x804          | HINT_MAP_REG1     | Host Interrupt Map Register for 4 to 4+3        |
| 0x808          | HINT_MAP_REG2     | Host Interrupt Map Register for 8 to 8+3        |
| 0x80c          | HINT_MAP_REG3     | Host Interrupt Map Register for 12 to 12+3      |
| 0x810          | HINT_MAP_REG4     | Host Interrupt Map Register for 16 to 16+3      |
| 0x814          | HINT_MAP_REG5     | Host Interrupt Map Register for 20 to 20+3      |
| 0x818          | HINT_MAP_REG6     | Host Interrupt Map Register for 24 to 24+3      |
| 0x81c          | HINT_MAP_REG7     | Host Interrupt Map Register for 28 to 28+3      |
| 0x820          | HINT_MAP_REG8     | Host Interrupt Map Register for 32 to 32+3      |
| 0x824          | HINT_MAP_REG9     | Host Interrupt Map Register for 36 to 36+3      |
| 0x828          | HINT_MAP_REG10    | Host Interrupt Map Register for 40 to 40+3      |
| 0x82c          | HINT_MAP_REG11    | Host Interrupt Map Register for 44 to 44+3      |
| 0x830          | HINT_MAP_REG12    | Host Interrupt Map Register for 48 to 48+3      |
| 0x834          | HINT_MAP_REG13    | Host Interrupt Map Register for 52 to 52+3      |
| 0x838          | HINT_MAP_REG14    | Host Interrupt Map Register for 56 to 56+3      |
| 0x83c          | HINT_MAP_REG15    | Host Interrupt Map Register for 60 to 60+3      |
| 0x840          | HINT_MAP_REG16    | Host Interrupt Map Register for 64 to 64+3      |

| TMS320C6672                                                 |
|-------------------------------------------------------------|
| Multicore Fixed and Floating-Point Digital Signal Processor |
| CDDC709E March 2014                                         |



SPRS708E—March 2014

#### Table 7-41 CIC0 Register

| Address Offset    | Register Mnemonic | Register Name                              |
|-------------------|-------------------|--------------------------------------------|
| 0x844             | HINT_MAP_REG17    | Host Interrupt Map Register for 68 to 68+3 |
| 0x848             | HINT_MAP_REG18    | Host Interrupt Map Register for 72 to 72+3 |
| 0x1500            | ENABLE_HINT_REG0  | Host Int Enable Register 0                 |
| 0x1504            | ENABLE_HINT_REG1  | Host Int Enable Register 1                 |
| 0x1508            | ENABLE_HINT_REG2  | Host Int Enable Register 2                 |
| End of Table 7-41 |                   |                                            |

# 7.10.2.2 CIC2 Register Map

### Table 7-42 CIC2 Register

| Address Offset | Register Mnemonic         | Register Name                                 |
|----------------|---------------------------|-----------------------------------------------|
| 0x0            | REVISION_REG              | Revision Register                             |
| 0x10           | GLOBAL_ENABLE_HINT_REG    | Global Host Int Enable Register               |
| 0x20           | STATUS_SET_INDEX_REG      | Status Set Index Register                     |
| 0x24           | STATUS_CLR_INDEX_REG      | Status Clear Index Register                   |
| 0x28           | ENABLE_SET_INDEX_REG      | Enable Set Index Register                     |
| 0x2c           | ENABLE_CLR_INDEX_REG      | Enable Clear Index Register                   |
| 0x34           | HINT_ENABLE_SET_INDEX_REG | Host Int Enable Set Index Register            |
| 0x38           | HINT_ENABLE_CLR_INDEX_REG | Host Int Enable Clear Index Register          |
| 0x200          | RAW_STATUS_REG0           | Raw Status Register 0                         |
| 0x204          | RAW_STATUS_REG1           | Raw Status Register 1                         |
| 0x208          | RAW_STATUS_REG2           | Raw Status Register 2                         |
| 0x20c          | RAW_STATUS_REG3           | Raw Status Register 3                         |
| 0x210          | RAW_STATUS_REG4           | Raw Status Register 4                         |
| 0x280          | ENA_STATUS_REG0           | Enabled Status Register 0                     |
| 0x284          | ENA_STATUS_REG1           | Enabled Status Register 1                     |
| 0x288          | ENA_STATUS_REG2           | Enabled Status Register 2                     |
| 0x28c          | ENA_STATUS_REG3           | Enabled Status Register 3                     |
| 0x290          | ENA_STATUS_REG4           | Enabled Status Register 4                     |
| 0x300          | ENABLE_REGO               | Enable Register 0                             |
| 0x304          | ENABLE_REG1               | Enable Register 1                             |
| 0x308          | ENABLE_REG2               | Enable Register 2                             |
| 0x30c          | ENABLE_REG3               | Enable Register 3                             |
| 0x310          | ENABLE_REG4               | Enable Register 4                             |
| 0x380          | ENABLE_CLR_REG0           | Enable Clear Register 0                       |
| 0x384          | ENABLE_CLR_REG1           | Enable Clear Register 1                       |
| 0x388          | ENABLE_CLR_REG2           | Enable Clear Register 2                       |
| 0x38c          | ENABLE_CLR_REG3           | Enable Clear Register 3                       |
| 0x390          | ENABLE_CLR_REG4           | Enable Clear Register 4                       |
| 0x400          | CH_MAP_REG0               | Interrupt Channel Map Register for 0 to 0+3   |
| 0x404          | CH_MAP_REG1               | Interrupt Channel Map Register for 4 to 4+3   |
| 0x408          | CH_MAP_REG2               | Interrupt Channel Map Register for 8 to 8+3   |
| 0x40c          | CH_MAP_REG3               | Interrupt Channel Map Register for 12 to 12+3 |
| 0x410          | CH_MAP_REG4               | Interrupt Channel Map Register for 16 to 16+3 |



#### Table 7-42 CIC2 Register

| Address Offset | Register Mnemonic | Register Name                                   |
|----------------|-------------------|-------------------------------------------------|
| 0x414          | CH_MAP_REG5       | Interrupt Channel Map Register for 20 to 20+3   |
| 0x418          | CH_MAP_REG6       | Interrupt Channel Map Register for 24 to 24+3   |
| 0x41c          | CH_MAP_REG7       | Interrupt Channel Map Register for 28 to 28+3   |
| 0x420          | CH_MAP_REG8       | Interrupt Channel Map Register for 32 to 32+3   |
| 0x424          | CH_MAP_REG9       | Interrupt Channel Map Register for 36 to 36+3   |
| 0x428          | CH_MAP_REG10      | Interrupt Channel Map Register for 40 to 40+3   |
| 0x42c          | CH_MAP_REG11      | Interrupt Channel Map Register for 44 to 44+3   |
| 0x430          | CH_MAP_REG12      | Interrupt Channel Map Register for 48 to 48+3   |
| 0x434          | CH_MAP_REG13      | Interrupt Channel Map Register for 52 to 52+3   |
| 0x438          | CH_MAP_REG14      | Interrupt Channel Map Register for 56 to 56+3   |
| 0x43c          | CH_MAP_REG15      | Interrupt Channel Map Register for 60 to 60+3   |
| 0x440          | CH_MAP_REG16      | Interrupt Channel Map Register for 64 to 64+3   |
| 0x444          | CH_MAP_REG17      | Interrupt Channel Map Register for 68 to 68+3   |
| 0x448          | CH_MAP_REG18      | Interrupt Channel Map Register for 72 to 72+3   |
| 0x44c          | CH_MAP_REG19      | Interrupt Channel Map Register for 76 to 76+3   |
| 0x450          | CH_MAP_REG20      | Interrupt Channel Map Register for 80 to 80+3   |
| 0x454          | CH_MAP_REG21      | Interrupt Channel Map Register for 84 to 84+3   |
| 0x458          | CH_MAP_REG22      | Interrupt Channel Map Register for 88 to 88+3   |
| 0x45c          | CH_MAP_REG23      | Interrupt Channel Map Register for 92 to 92+3   |
| 0x460          | CH_MAP_REG24      | Interrupt Channel Map Register for 96 to 96+3   |
| 0x464          | CH_MAP_REG25      | Interrupt Channel Map Register for 100 to 100+3 |
| 0x468          | CH_MAP_REG26      | Interrupt Channel Map Register for 104 to 104+3 |
| 0х46с          | CH_MAP_REG27      | Interrupt Channel Map Register for 108 to 108+3 |
| 0x470          | CH_MAP_REG28      | Interrupt Channel Map Register for 112 to 112+3 |
| 0x474          | CH_MAP_REG29      | Interrupt Channel Map Register for 116 to 116+3 |
| 0x478          | CH_MAP_REG30      | Interrupt Channel Map Register for 120 to 120+3 |
| 0x47c          | CH_MAP_REG31      | Interrupt Channel Map Register for 124 to 124+3 |
| 0x480          | CH_MAP_REG32      | Interrupt Channel Map Register for 128 to 128+3 |
| 0x484          | CH_MAP_REG33      | Interrupt Channel Map Register for 132 to 132+3 |
| 0x488          | CH_MAP_REG34      | Interrupt Channel Map Register for 136 to 136+3 |
| 0x48c          | CH_MAP_REG35      | Interrupt Channel Map Register for 140 to 140+3 |
| 0x490          | CH_MAP_REG36      | Interrupt Channel Map Register for 144 to 144+3 |
| 0x494          | CH_MAP_REG37      | Interrupt Channel Map Register for 148 to 148+3 |
| 0x498          | CH_MAP_REG38      | Interrupt Channel Map Register for 152 to 152+3 |
| 0x49c          | CH_MAP_REG39      | Interrupt Channel Map Register for 156 to 156+3 |
| 0x800          | HINT_MAP_REG0     | Host Interrupt Map Register for 0 to 0+3        |
| 0x804          | HINT_MAP_REG1     | Host Interrupt Map Register for 4 to 4+3        |
| 0x808          | HINT_MAP_REG2     | Host Interrupt Map Register for 8 to 8+3        |
| 0x80c          | HINT_MAP_REG3     | Host Interrupt Map Register for 12 to 12+3      |
| 0x810          | HINT_MAP_REG4     | Host Interrupt Map Register for 16 to 16+3      |
| 0x814          | HINT_MAP_REG5     | Host Interrupt Map Register for 20 to 20+3      |
| 0x818          | HINT_MAP_REG6     | Host Interrupt Map Register for 24 to 24+3      |
| 0x81c          | HINT_MAP_REG7     | Host Interrupt Map Register for 28 to 28+3      |

| TMS32   | 0C6672                                               |
|---------|------------------------------------------------------|
| Multico | re Fixed and Floating-Point Digital Signal Processor |
|         | March 2014                                           |



SPRS708E—March 2014

#### Table 7-42 CIC2 Register

| Address Offset    | Register Mnemonic | Register Name                              |
|-------------------|-------------------|--------------------------------------------|
| 0x820             | HINT_MAP_REG8     | Host Interrupt Map Register for 32 to 32+3 |
| 0x824             | HINT_MAP_REG9     | Host Interrupt Map Register for 36 to 36+3 |
| 0x828             | HINT_MAP_REG10    | Host Interrupt Map Register for 40 to 40+3 |
| 0x82c             | HINT_MAP_REG11    | Host Interrupt Map Register for 44 to 44+3 |
| 0x830             | HINT_MAP_REG12    | Host Interrupt Map Register for 48 to 48+3 |
| 0x1500            | ENABLE_HINT_REG0  | Host Int Enable Register 0                 |
| 0x1504            | ENABLE_HINT_REG1  | Host Int Enable Register 1                 |
| End of Table 7-42 |                   |                                            |

# 7.10.2.3 CIC3 Register Map

### Table 7-43 CIC3 Register

| Address Offset | Register Mnemonic         | Register Name                                 |
|----------------|---------------------------|-----------------------------------------------|
| 0x0            | REVISION_REG              | Revision Register                             |
| 0x10           | GLOBAL_ENABLE_HINT_REG    | Global Host Int Enable Register               |
| 0x20           | STATUS_SET_INDEX_REG      | Status Set Index Register                     |
| 0x24           | STATUS_CLR_INDEX_REG      | Status Clear Index Register                   |
| 0x28           | ENABLE_SET_INDEX_REG      | Enable Set Index Register                     |
| 0x2c           | ENABLE_CLR_INDEX_REG      | Enable Clear Index Register                   |
| 0x34           | HINT_ENABLE_SET_INDEX_REG | Host Int Enable Set Index Register            |
| 0x38           | HINT_ENABLE_CLR_INDEX_REG | Host Int Enable Clear Index Register          |
| 0x200          | RAW_STATUS_REG0           | Raw Status Register 0                         |
| 0x204          | RAW_STATUS_REG1           | Raw Status Register 1                         |
| 0x280          | ENA_STATUS_REG0           | Enabled Status Register 0                     |
| 0x284          | ENA_STATUS_REG1           | Enabled Status Register 1                     |
| 0x300          | ENABLE_REGO               | Enable Register 0                             |
| 0x304          | ENABLE_REG1               | Enable Register 1                             |
| 0x380          | ENABLE_CLR_REG0           | Enable Clear Register 0                       |
| 0x384          | ENABLE_CLR_REG1           | Enable Clear Register 1                       |
| 0x400          | CH_MAP_REG0               | Interrupt Channel Map Register for 0 to 0+3   |
| 0x404          | CH_MAP_REG1               | Interrupt Channel Map Register for 4 to 4+3   |
| 0x408          | CH_MAP_REG2               | Interrupt Channel Map Register for 8 to 8+3   |
| 0x40c          | CH_MAP_REG3               | Interrupt Channel Map Register for 12 to 12+3 |
| 0x410          | CH_MAP_REG4               | Interrupt Channel Map Register for 16 to 16+3 |
| 0x414          | CH_MAP_REG5               | Interrupt Channel Map Register for 20 to 20+3 |
| 0x418          | CH_MAP_REG6               | Interrupt Channel Map Register for 24 to 24+3 |
| 0x41c          | CH_MAP_REG7               | Interrupt Channel Map Register for 28 to 28+3 |
| 0x420          | CH_MAP_REG8               | Interrupt Channel Map Register for 32 to 32+3 |
| 0x424          | CH_MAP_REG9               | Interrupt Channel Map Register for 36 to 36+3 |
| 0x428          | CH_MAP_REG10              | Interrupt Channel Map Register for 40 to 40+3 |
| 0x42c          | CH_MAP_REG11              | Interrupt Channel Map Register for 44 to 44+3 |
| 0x430          | CH_MAP_REG12              | Interrupt Channel Map Register for 48 to 48+3 |
| 0x434          | CH_MAP_REG13              | Interrupt Channel Map Register for 52 to 52+3 |
| 0x438          | CH_MAP_REG14              | Interrupt Channel Map Register for 56 to 56+3 |


### Table 7-43 CIC3 Register

| Address Offset    | Register Mnemonic | Register Name                                 |  |
|-------------------|-------------------|-----------------------------------------------|--|
| 0x43c             | CH_MAP_REG15      | Interrupt Channel Map Register for 60 to 60+3 |  |
| 0x800             | HINT_MAP_REG0     | Host Interrupt Map Register for 0 to 0+3      |  |
| 0x804             | HINT_MAP_REG1     | Host Interrupt Map Register for 4 to 4+3      |  |
| 0x808             | HINT_MAP_REG2     | Host Interrupt Map Register for 8 to 8+3      |  |
| 0x80c             | HINT_MAP_REG3     | Host Interrupt Map Register for 12 to 12+3    |  |
| 0x810             | HINT_MAP_REG4     | Host Interrupt Map Register for 16 to 16+3    |  |
| 0x814             | HINT_MAP_REG5     | Host Interrupt Map Register for 20 to 20+3    |  |
| 0x818             | HINT_MAP_REG6     | Host Interrupt Map Register for 24 to 24+3    |  |
| 0x81c             | HINT_MAP_REG7     | Host Interrupt Map Register for 28 to 28+3    |  |
| 0x820             | HINT_MAP_REG8     | Host Interrupt Map Register for 32 to 32+3    |  |
| 0x824             | HINT_MAP_REG9     | Host Interrupt Map Register for 36 to 36+3    |  |
| 0x1500            | ENABLE_HINT_REG0  | Host Int Enable Register 0                    |  |
| 0x1504            | ENABLE_HINT_REG1  | Host Int Enable Register 1                    |  |
| End of Table 7-43 |                   | ·                                             |  |

### 7.10.3 Inter-Processor Register Map

### Table 7-44 IPC Generation Registers (IPCGRx) (Part 1 of 2)

| Address Start | Address End | Size | Register Name | Description                                 |
|---------------|-------------|------|---------------|---------------------------------------------|
| 0x02620200    | 0x02620203  | 4B   | NMIGRO        | NMI Event Generation Register for CorePac0  |
| 0x02620204    | 0x02620207  | 4B   | NMIGR1        | NMI Event Generation Register for CorePac 1 |
| 0x02620208    | 0x0262020B  | 4B   | Reserved      | Reserved                                    |
| 0x0262020C    | 0x0262020F  | 4B   | Reserved      | Reserved                                    |
| 0x02620210    | 0x02620213  | 4B   | Reserved      | Reserved                                    |
| 0x02620214    | 0x02620217  | 4B   | Reserved      | Reserved                                    |
| 0x02620218    | 0x0262021B  | 4B   | Reserved      | Reserved                                    |
| 0x0262021C    | 0x0262021F  | 4B   | Reserved      | Reserved                                    |
| 0x02620220    | 0x0262023F  | 32B  | Reserved      | Reserved                                    |
| 0x02620240    | 0x02620243  | 4B   | IPCGR0        | IPC Generation Register for CorePac 0       |
| 0x02620244    | 0x02620247  | 4B   | IPCGR1        | IPC Generation Register for CorePac 1       |
| 0x02620248    | 0x0262024B  | 4B   | Reserved      | Reserved                                    |
| 0x0262024C    | 0x0262024F  | 4B   | Reserved      | Reserved                                    |
| 0x02620250    | 0x02620253  | 4B   | Reserved      | Reserved                                    |
| 0x02620254    | 0x02620257  | 4B   | Reserved      | Reserved                                    |
| 0x02620258    | 0x0262025B  | 4B   | Reserved      | Reserved                                    |
| 0x0262025C    | 0x0262025F  | 4B   | Reserved      | Reserved                                    |
| 0x02620260    | 0x0262027B  | 28B  | Reserved      | Reserved                                    |
| 0x0262027C    | 0x0262027F  | 4B   | IPCGRH        | IPC Generation Register for Host            |
| 0x02620280    | 0x02620283  | 4B   | IPCAR0        | IPC Acknowledgement Register for CorePac 0  |
| 0x02620284    | 0x02620287  | 4B   | IPCAR1        | IPC Acknowledgement Register for CorePac 1  |
| 0x02620288    | 0x0262028B  | 4B   | Reserved      | Reserved                                    |
| 0x0262028C    | 0x0262028F  | 4B   | Reserved      | Reserved                                    |
| 0x02620290    | 0x02620293  | 4B   | Reserved      | Reserved                                    |
| 0x02620294    | 0x02620297  | 4B   | Reserved      | Reserved                                    |



| Address Start     | Address End | Size | Register Name | Description                           |
|-------------------|-------------|------|---------------|---------------------------------------|
| 0x02620298        | 0x0262029B  | 4B   | Reserved      | Reserved                              |
| 0x0262029C        | 0x0262029F  | 4B   | Reserved      | Reserved                              |
| 0x026202A0        | 0x026202BB  | 28B  | Reserved      | Reserved                              |
| 0x026202BC        | 0x026202BF  | 4B   | IPCARH        | IPC Acknowledgement Register for Host |
| End of Table 7-44 |             |      |               |                                       |

### Table 7-44 IPC Generation Registers (IPCGRx) (Part 2 of 2)

## 7.10.4 NMI and LRESET

Non-maskable interrupts ( $\overline{\text{NMI}}$ ) can be generated by chip-level registers and the  $\overline{\text{LRESET}}$  can be generated by software writing into LPSC registers.  $\overline{\text{LRESET}}$  and  $\overline{\text{NMI}}$  can also be asserted by device pins or watchdog timers. One  $\overline{\text{NMI}}$  pin and one  $\overline{\text{LRESET}}$  pin are shared by all CorePacs on the device. The CORESEL[3:0] pins can be configured to select between the CorePacs available as shown in Table 7-45.

### Table 7-45 **LRESET** and **NMI** Decoding

| CORESEL[3:0] Pin Input | LRESET Pin Input | NMI Pin Input | <b>LRESETNMIEN</b> Pin Input | Reset Mux Block Output                      |  |
|------------------------|------------------|---------------|------------------------------|---------------------------------------------|--|
| XXXX                   | Х                | х             | 1                            | No local reset or MII assertion.            |  |
| 0000                   | 0                | х             | 0                            | Assert local reset to CorePac 0             |  |
| 0001                   | 0                | х             | 0                            | Assert local reset to CorePac 1             |  |
| 0010                   | 0                | х             | 0                            |                                             |  |
| 0011                   | 0                | х             | 0                            |                                             |  |
| 0100                   | 0                | Х             | 0                            | Reserved                                    |  |
| 0101                   | 0                | х             | 0                            |                                             |  |
| 0110                   | 0                | х             | 0                            |                                             |  |
| 0111                   | 0                | Х             | 0                            |                                             |  |
| 1xxx                   | 0                | Х             | 0                            | Assert local reset to all CorePacs          |  |
| 0000                   | 1                | 1             | 0                            | De-assert local reset & NMI to CorePac 0    |  |
| 0001                   | 1                | 1             | 0                            | De-assert local reset & NMI to CorePac 1    |  |
| 0010                   | 1                | 1             | 0                            |                                             |  |
| 0011                   | 1                | 1             | 0                            |                                             |  |
| 0100                   | 1                | 1             | 0                            | Reserved                                    |  |
| 0101                   | 1                | 1             | 0                            | Reserved                                    |  |
| 0110                   | 1                | 1             | 0                            |                                             |  |
| 0111                   | 1                | 1             | 0                            |                                             |  |
| 1xxx                   | 1                | 1             | 0                            | De-assert local reset & NMI to all CorePacs |  |
| 0000                   | 1                | 0             | 0                            | Assert NMI to CorePac 0                     |  |
| 0001                   | 1                | 0             | 0                            | Assert NMI to CorePac 1                     |  |
| 0010                   | 1                | 0             | 0                            |                                             |  |
| 0011                   | 1                | 0             | 0                            |                                             |  |
| 0100                   | 1                | 0             | 0                            | Reserved                                    |  |
| 0101                   | 1                | 0             | 0                            |                                             |  |
| 0110                   | 1                | 0             | 0                            |                                             |  |
| 0111                   | 1                | 0             | 0                            |                                             |  |
| 1xxx                   | 1                | 0             | 0                            | Assert MMI to all CorePacs                  |  |
| End of Table 7-45      |                  |               |                              |                                             |  |

### 7.10.5 External Interrupts Electrical Data/Timing

### Table 7-46 NMI and Local Reset Timing Requirements <sup>(1)</sup>

#### (see Figure 7-33)

| No. |                                   |                                                        | Min  | Max | Unit |
|-----|-----------------------------------|--------------------------------------------------------|------|-----|------|
| 1   | tsu( <u>LRESET-LRESETNMIENL</u> ) | Setup Time - IRESET valid before IRESETNMIEN low       | 12*P |     | ns   |
| 1   | tsu(NMI-LRESETNMIENL)             | Setup Time - NMI valid before LRESETNMIEN low          | 12*P |     | ns   |
| 1   | tsu(CORESELn-LRESETNMIENL)        | Setup Time - CORESEL[2:0] valid before LRESETNMIEN low | 12*P |     | ns   |
| 2   | th(LRESETNMIENL-LRESET)           | Hold Time - TRESET valid after TRESETNMIEN high        | 12*P |     | ns   |
| 2   | th(LRESETNMIENL-NMI)              | Hold Time - NMI valid after RESETNMIEN high            | 12*P |     | ns   |
| 2   | th(IRESETNMIENL-CORESELn)         | Hold Time - CORESEL[2:0] valid after LRESETNMIEN high  | 12*P |     | ns   |
| 3   | tw(LRESETNMIEN)                   | Pulse Width - IRESETNMIEN low width                    | 12*P |     | ns   |
| End | of Table 7-46                     |                                                        |      |     |      |

1 P = 1/SYSCLK1 frequency in ns.

#### Figure 7-33 NMI and Local Reset Timing



### 7.10.6 Host Interrupt Output

The C66x CorePac can assert an event to the external host processor using HOUT. Table 7-47 shows the timing for the HOUT pulse. For more details, see section 3.3.15.

### Table 7-47 HOUT Switching Characteristics

| (see | Fig | Jure | 7-34) | ۱ |
|------|-----|------|-------|---|
|------|-----|------|-------|---|

| No.   |                                                | Min                 | Max | Unit |
|-------|------------------------------------------------|---------------------|-----|------|
| 1     | t <sub>w(HOUTH)</sub> HOUT pulse duration high | 24*P <sup>(1)</sup> |     | ns   |
| 2     | t <sub>w(HOUTL)</sub> HOUT pulse duration low  | 24*P                |     | ns   |
| End o | of Table 7-47                                  |                     |     |      |

1 P = 1/SYSCLK1 frequency in ns.

### Figure 7-34 HOUT Timing





### 7.11 Memory Protection Unit (MPU)

The C6672 supports four MPUs:

- One MPU is used to protect the main CORE/3 CFG TeraNet (the CFG space of all slave devices on the TeraNet is protected by the MPU).
- Two MPUs are used for QM\_SS (one for the DATA PORT port and one for the CFG PORT port).
- One MPU is used for Semaphore.

This section contains MPU register map and details of device-specific MPU registers only. For MPU features and details of generic MPU registers, see the *Memory Protection Unit (MPU) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

The following tables show the configuration of each MPU and the memory regions protected by each MPU.

#### Table 7-48MPU Default Configuration

| Setting                                 | MPU0<br>(Main CFG TeraNet) | MPU1<br>(QM_SS DATA PORT) | MPU2<br>(QM_SS CFG PORT) | MPU3<br>(Semaphore) |
|-----------------------------------------|----------------------------|---------------------------|--------------------------|---------------------|
| Default permission                      | Assume allowed             | Assume allowed            | Assume allowed           | Assume allowed      |
| Number of allowed IDs supported         | 16                         | 16                        | 16                       | 16                  |
| Number of programmable ranges supported | 16                         | 5                         | 16                       | 1                   |
| Compare width                           | 1KB granularity            | 1KB granularity           | 1KB granularity          | 1KB granularity     |
| End of Table 7-48                       | ·                          | •                         |                          |                     |

#### Table 7-49 MPU Memory Regions

|      | Memory Protection | Start Address | End Address |
|------|-------------------|---------------|-------------|
| MPU0 | Main CFG TeraNet  | 0x01D00000    | 0x026207FF  |
| MPU1 | QM_SS DATA PORT   | 0x34000000    | 0x340BFFFF  |
| MPU2 | QM_SS CFG PORT    | 0x02A00000    | 0x02ABFFFF  |
| MPU3 | Semaphore         | 0x02640000    | 0x026407FF  |

Table 7-50 shows the privilege ID of each CORE and every mastering peripheral. Table 7-50 also shows the privilege level (supervisor vs. user), security level (secure vs. non-secure), and access type (instruction read vs. data/DMA read or write) of each master on the device. In some cases, a particular setting depends on software being executed at the time of the access or the configuration of the master peripheral.

| Table 7-50 | Privilege ID Settings (Part 1 of 2) |
|------------|-------------------------------------|
|------------|-------------------------------------|

| Privilege ID | Master                            | Privilege Level              | Security Level | Access Type |
|--------------|-----------------------------------|------------------------------|----------------|-------------|
| 0            | CorePac0                          | SW dependant, driven by MSMC | SW dependant   | DMA         |
| 1            | CorePac1                          | SW dependant, driven by MSMC | SW dependant   | DMA         |
| 2            | Reserved                          |                              |                |             |
| 3            | Reserved                          |                              |                |             |
| 4            | Reserved                          |                              |                |             |
| 5            | Reserved                          |                              |                |             |
| 6            | Reserved                          |                              |                |             |
| 7            | Reserved                          |                              |                |             |
| 8            | Network Coprocessor<br>Packet DMA | User                         | Non-secure     | DMA         |



| Privilege ID | Master                           | Privilege Level                                                                                                                                                                                                    | Security Level     | Access Type |  |  |
|--------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--|--|
| 9            | SRIO Packet DMA/SRIO_M           | User/Driven by SRIO block, User mode and supervisor mode is determined on a per-transaction basis. Only the transaction with source ID matching the value in the SupervisorID register is granted supervisor mode. | Non-secure         | DMA         |  |  |
| 10           | QM_SS Packet<br>DMA/QM_SS Second | User                                                                                                                                                                                                               | Non-secure         | DMA         |  |  |
| 11           | PCle                             | Driven by PCIe module                                                                                                                                                                                              | Non-secure         | DMA         |  |  |
| 12           | Debug_SS                         | Driven by Debug_SS                                                                                                                                                                                                 | Driven by Debug_SS | DMA         |  |  |
| 13           | HyperLink                        | Driven by HyperLink                                                                                                                                                                                                | Non-secure         | DMA         |  |  |
| 14           | HyperLink                        | Supervisor                                                                                                                                                                                                         | Non-secure         | DMA         |  |  |
| 15           | TSIP0/1                          | User                                                                                                                                                                                                               | Non-secure         | DMA         |  |  |
| End of Table | 7-50                             | ·                                                                                                                                                                                                                  | 1                  | 1           |  |  |

Table 7-50Privilege ID Settings (Part 2 of 2)

Table 7-51 shows the master ID of each CorePac and every mastering peripheral. Master IDs are used to determine allowed connections between masters and slaves. Unlike privilege IDs, which can be shared across different masters, master IDs are unique to each master.

| Master ID | Master          |
|-----------|-----------------|
| 0         | CorePac0        |
| 1         | CorePac1        |
| 2         | Reserved        |
| 3         | Reserved        |
| 4         | Reserved        |
| 5         | Reserved        |
| 6         | Reserved        |
| 7         | Reserved        |
| 8         | CorePac0_CFG    |
| 9         | CorePac1_CFG    |
| 10        | Reserved        |
| 11        | Reserved        |
| 12        | Reserved        |
| 13        | Reserved        |
| 14        | Reserved        |
| 15        | Reserved        |
| 16        | EDMA0_TC0 read  |
| 17        | EDMA0_TC0 write |
| 18        | EDMA0_TC1 read  |
| 19        | EDMA0_TC1 write |
| 20        | EDMA1_TC0 read  |
| 21        | EDMA1_TC0 write |
| 22        | EDMA1_TC1 read  |
| 23        | EDMA1_TC1 write |
| 24        | EDMA1_TC2 read  |
| 25        | EDMA1_TC2 write |

Table 7-51Master ID Settings (Part 1 of 3)

### TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor** SPRS708E—March 2014





#### Master ID Settings (Part 2 of 3) $^{(1)}$ Table 7-51

| Master ID | Master                         |
|-----------|--------------------------------|
| 26        | EDMA1_TC3 read                 |
| 27        | EDMA1_TC3 write                |
| 28        | EDMA2_TC0 read                 |
| 29        | EDMA2_TC0 write                |
| 30        | EDMA2_TC1 read                 |
| 31        | EDMA2_TC1 write                |
| 32        | EDMA2_TC2 read                 |
| 33        | EDMA2_TC2 write                |
| 34        | EDMA2_TC3 read                 |
| 35        | EDMA2_TC3 write                |
| 36 - 37   | Reserved                       |
| 38 - 39   | SRIO Packet DMA                |
| 40 - 47   | Reserved                       |
| 48        | Debug SS                       |
| 49        | EDMA3CC0                       |
| 50        | EDMA3CC1                       |
| 51        | EDMA3CC2                       |
| 52        | MSMC <sup>(2)</sup>            |
| 53        | PCIe                           |
| 54        | SRIO_Master                    |
| 55        | HyperLink                      |
| 56 - 59   | Network Coprocessor Packet DMA |
| 60 - 85   | Reserved                       |
| 86        | TSIPO                          |
| 87        | TSIP1                          |
| 88 - 91   | Queue Manager Packet DMA       |
| 92 - 93   | Queue Manager Second           |
| 94 - 127  | Reserved                       |
| 128       | Tracer_core_0 <sup>(3)</sup>   |
| 129       | Tracer_core_1                  |
| 130       | Reserved                       |
| 131       | Reserved                       |
| 132       | Reserved                       |
| 133       | Reserved                       |
| 134       | Reserved                       |
| 135       | Reserved                       |
| 136       | Tracer_MSMC0                   |
| 137       | Tracer_MSMC1                   |
| 138       | Tracer_MSMC2                   |
| 139       | Tracer_MSMC3                   |
| 140       | Tracer_DDR                     |
| 141       | Tracer_SM                      |
| 142       | Tracer_QM_CFG                  |



## Table 7-51Master ID Settings (Part 3 of 3)

| Master ID         | Master        |
|-------------------|---------------|
| 143               | Tracer_QM_DMA |
| 144               | Tracer_CFG    |
| End of Table 7-51 |               |

1 Some of the Packet DMA-based peripherals require multiple master IDs. Queue Manager Packet DMA is assigned with 88, 89, 90, 91, but only 88 - 89 are actually used. For the network coprocessor packet DMA port, 56, 57, 58, and 59 are assigned, while only one (56) is actually used. There are two master ID values assigned for the queue manager second master port: one master ID for external linking RAM and the other master ID for PDSP/MCDM accesses.

2 The master ID for MSMC is for the transactions initiated by MSMC internally and sent to the DDR.

3 All traces are set to the same master ID and bit 7 of the master ID must be 1.

### 7.11.1 MPU Registers

This section includes the offsets for MPU registers and definitions for device-specific MPU registers.

### 7.11.1.1 MPU Register Map

#### Table 7-52MPU0 Registers (Part 1 of 2)

| Offset | Name        | Description                                             |  |  |  |  |
|--------|-------------|---------------------------------------------------------|--|--|--|--|
| 0h     | REVID       | Revision ID                                             |  |  |  |  |
| 4h     | CONFIG      | Configuration                                           |  |  |  |  |
| 10h    | IRAWSTAT    | Interrupt raw status/set                                |  |  |  |  |
| 14h    | IENSTAT     | Interrupt enable status/clear                           |  |  |  |  |
| 18h    | IENSET      | Interrupt enable                                        |  |  |  |  |
| 1Ch    | IENCLR      | Interrupt enable clear                                  |  |  |  |  |
| 20h    | EOI         | End of interrupt                                        |  |  |  |  |
| 200h   | PROG0_MPSAR | Programmable range 0, start address                     |  |  |  |  |
| 204h   | PROG0_MPEAR | Programmable range 0, end address                       |  |  |  |  |
| 208h   | PROG0_MPPA  | Programmable range 0, memory page protection attributes |  |  |  |  |
| 210h   | PROG1_MPSAR | Programmable range 1, start address                     |  |  |  |  |
| 214h   | PROG1_MPEAR | Programmable range 1, end address                       |  |  |  |  |
| 218h   | PROG1_MPPA  | Programmable range 1, memory page protection attributes |  |  |  |  |
| 220h   | PROG2_MPSAR | Programmable range 2, start address                     |  |  |  |  |
| 224h   | PROG2_MPEAR | Programmable range 2, end address                       |  |  |  |  |
| 228h   | PROG2_MPPA  | Programmable range 2, memory page protection attributes |  |  |  |  |
| 230h   | PROG3_MPSAR | Programmable range 3, start address                     |  |  |  |  |
| 234h   | PROG3_MPEAR | Programmable range 3, end address                       |  |  |  |  |
| 238h   | PROG3_MPPA  | Programmable range 3, memory page protection attributes |  |  |  |  |
| 240h   | PROG4_MPSAR | Programmable range 4, start address                     |  |  |  |  |
| 244h   | PROG4_MPEAR | Programmable range 4, end address                       |  |  |  |  |
| 248h   | PROG4_MPPA  | Programmable range 4, memory page protection attributes |  |  |  |  |
| 250h   | PROG5_MPSAR | Programmable range 5, start address                     |  |  |  |  |
| 254h   | PROG5_MPEAR | Programmable range 5, end address                       |  |  |  |  |
| 258h   | PROG5_MPPA  | Programmable range 5, memory page protection attributes |  |  |  |  |
| 260h   | PROG6_MPSAR | Programmable range 6, start address                     |  |  |  |  |
| 264h   | PROG6_MPEAR | Programmable range 6, end address                       |  |  |  |  |
| 268h   | PROG6_MPPA  | Programmable range 6, memory page protection attributes |  |  |  |  |
| 270h   | PROG7_MPSAR | Programmable range 7, start address                     |  |  |  |  |

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014



### Table 7-52MPU0 Registers (Part 2 of 2)

| <b>Offset</b><br>274h | Name         | Description                                              |  |  |  |  |
|-----------------------|--------------|----------------------------------------------------------|--|--|--|--|
| 274h                  |              |                                                          |  |  |  |  |
| 2740                  | PROG7_MPEAR  | Programmable range 7, end address                        |  |  |  |  |
| 278h                  | PROG7_MPPA   | Programmable range 7, memory page protection attributes  |  |  |  |  |
| 280h                  | PROG8_MPSAR  | Programmable range 8, start address                      |  |  |  |  |
| 284h                  | PROG8_MPEAR  | Programmable range 8, end address                        |  |  |  |  |
| 288h                  | PROG8_MPPA   | Programmable range 8, memory page protection attributes  |  |  |  |  |
| 290h                  | PROG9_MPSAR  | Programmable range 9, start address                      |  |  |  |  |
| 294h                  | PROG9_MPEAR  | Programmable range 9, end address                        |  |  |  |  |
| 298h                  | PROG9_MPPA   | Programmable range 9, memory page protection attributes  |  |  |  |  |
| 2A0h                  | PROG10_MPSAR | Programmable range 10, start address                     |  |  |  |  |
| 2A4h                  | PROG10_MPEAR | Programmable range 10, end address                       |  |  |  |  |
| 2A8h                  | PROG10_MPPA  | Programmable range 10, memory page protection attributes |  |  |  |  |
| 2B0h                  | PROG11_MPSAR | Programmable range 11, start address                     |  |  |  |  |
| 2B4h                  | PROG11_MPEAR | Programmable range 11, end address                       |  |  |  |  |
| 2B8h                  | PROG11_MPPA  | Programmable range 11, memory page protection attributes |  |  |  |  |
| 2C0h                  | PROG12_MPSAR | Programmable range 12, start address                     |  |  |  |  |
| 2C4h                  | PROG12_MPEAR | Programmable range 12, end address                       |  |  |  |  |
| 2C8h                  | PROG12_MPPA  | Programmable range 12, memory page protection attributes |  |  |  |  |
| 2D0h                  | PROG13_MPSAR | Programmable range 13, start address                     |  |  |  |  |
| 2D4h                  | PROG13_MPEAR | Programmable range 13, end address                       |  |  |  |  |
| 2Dh                   | PROG13_MPPA  | Programmable range 13, memory page protection attributes |  |  |  |  |
| 2E0h                  | PROG14_MPSAR | Programmable range 14, start address                     |  |  |  |  |
| 2E4h                  | PROG14_MPEAR | Programmable range 14, end address                       |  |  |  |  |
| 2E8h                  | PROG14_MPPA  | Programmable range 14, memory page protection attributes |  |  |  |  |
| 2F0h                  | PROG15_MPSAR | Programmable range 15, start address                     |  |  |  |  |
| 2F4h                  | PROG15_MPEAR | Programmable range 15, end address                       |  |  |  |  |
| 2F8h                  | PROG15_MPPA  | Programmable range 15, memory page protection attributes |  |  |  |  |
| 300h                  | FLTADDRR     | Fault address                                            |  |  |  |  |
| 304h                  | FLTSTAT      | Fault status                                             |  |  |  |  |
| 308h                  | FLTCLR       | Fault clear                                              |  |  |  |  |
| End of Table 7-       | -52          |                                                          |  |  |  |  |

### Table 7-53 MPU1 Registers (Part 1 of 2)

| Offset | Name        | Description                                             |                                   |  |  |  |  |
|--------|-------------|---------------------------------------------------------|-----------------------------------|--|--|--|--|
| 0h     | REVID       | Revision ID                                             |                                   |  |  |  |  |
| 4h     | CONFIG      | Configuration                                           | onfiguration                      |  |  |  |  |
| 10h    | IRAWSTAT    | Interrupt raw status/set                                |                                   |  |  |  |  |
| 14h    | IENSTAT     | Interrupt enable status/clear                           | nterrupt enable status/clear      |  |  |  |  |
| 18h    | IENSET      | Interrupt enable                                        | Interrupt enable                  |  |  |  |  |
| 1Ch    | IENCLR      | Interrupt enable clear                                  | Interrupt enable clear            |  |  |  |  |
| 20h    | EOI         | End of interrupt                                        |                                   |  |  |  |  |
| 200h   | PROG0_MPSAR | Programmable range 0, start address                     |                                   |  |  |  |  |
| 204h   | PROG0_MPEAR | Programmable range 0, end address                       | Programmable range 0, end address |  |  |  |  |
| 208h   | PROG0_MPPA  | Programmable range 0, memory page protection attributes |                                   |  |  |  |  |



| l able 7-53  | MPUT Registers (Part | 2 01 2)                                                 |  |  |  |  |
|--------------|----------------------|---------------------------------------------------------|--|--|--|--|
| Offset       | Name                 | Description                                             |  |  |  |  |
| 210h         | PROG1_MPSAR          | Programmable range 1, start address                     |  |  |  |  |
| 214h         | PROG1_MPEAR          | Programmable range 1, end address                       |  |  |  |  |
| 218h         | PROG1_MPPA           | Programmable range 1, memory page protection attributes |  |  |  |  |
| 220h         | PROG2_MPSAR          | Programmable range 2, start address                     |  |  |  |  |
| 224h         | PROG2_MPEAR          | Programmable range 2, end address                       |  |  |  |  |
| 228h         | PROG2_MPPA           | Programmable range 2, memory page protection attributes |  |  |  |  |
| 230h         | PROG3_MPSAR          | Programmable range 3, start address                     |  |  |  |  |
| 234h         | PROG3_MPEAR          | Programmable range 3, end address                       |  |  |  |  |
| 238h         | PROG3_MPPA           | Programmable range 3, memory page protection attributes |  |  |  |  |
| 240h         | PROG4_MPSAR          | Programmable range 4, start address                     |  |  |  |  |
| 244h         | PROG4_MPEAR          | Programmable range 4, end address                       |  |  |  |  |
| 248h         | PROG4_MPPA           | Programmable range 4, memory page protection attributes |  |  |  |  |
| 300h         | FLTADDRR             | Fault address                                           |  |  |  |  |
| 304h         | FLTSTAT              | Fault status                                            |  |  |  |  |
| 308h         | FLTCLR               | Fault clear                                             |  |  |  |  |
| End of Table | 7-53                 |                                                         |  |  |  |  |

### Table 7-53MPU1 Registers (Part 2 of 2)

### Table 7-54MPU2 Registers (Part 1 of 2)

| Offset | Name        | Description                                             |  |  |  |  |  |
|--------|-------------|---------------------------------------------------------|--|--|--|--|--|
| 0h     | REVID       | Revision ID                                             |  |  |  |  |  |
| 4h     | CONFIG      | Configuration                                           |  |  |  |  |  |
| 10h    | IRAWSTAT    | Interrupt raw status/set                                |  |  |  |  |  |
| 14h    | IENSTAT     | Interrupt enable status/clear                           |  |  |  |  |  |
| 18h    | IENSET      | Interrupt enable                                        |  |  |  |  |  |
| 1Ch    | IENCLR      | Interrupt enable clear                                  |  |  |  |  |  |
| 20h    | EOI         | End of interrupt                                        |  |  |  |  |  |
| 200h   | PROG0_MPSAR | Programmable range 0, start address                     |  |  |  |  |  |
| 204h   | PROG0_MPEAR | Programmable range 0, end address                       |  |  |  |  |  |
| 208h   | PROG0_MPPA  | Programmable range 0, memory page protection attributes |  |  |  |  |  |
| 210h   | PROG1_MPSAR | Programmable range 1, start address                     |  |  |  |  |  |
| 214h   | PROG1_MPEAR | Programmable range 1, end address                       |  |  |  |  |  |
| 218h   | PROG1_MPPA  | Programmable range 1, memory page protection attributes |  |  |  |  |  |
| 220h   | PROG2_MPSAR | Programmable range 2, start address                     |  |  |  |  |  |
| 224h   | PROG2_MPEAR | Programmable range 2, end address                       |  |  |  |  |  |
| 228h   | PROG2_MPPA  | Programmable range 2, memory page protection attributes |  |  |  |  |  |
| 230h   | PROG3_MPSAR | Programmable range 3, start address                     |  |  |  |  |  |
| 234h   | PROG3_MPEAR | Programmable range 3, end address                       |  |  |  |  |  |
| 238h   | PROG3_MPPA  | Programmable range 3, memory page protection attributes |  |  |  |  |  |
| 240h   | PROG4_MPSAR | Programmable range 4, start address                     |  |  |  |  |  |
| 244h   | PROG4_MPEAR | Programmable range 4, end address                       |  |  |  |  |  |
| 248h   | PROG4_MPPA  | Programmable range 4, memory page protection attributes |  |  |  |  |  |
| 250h   | PROG5_MPSAR | Programmable range 5, start address                     |  |  |  |  |  |
| 254h   | PROG5_MPEAR | Programmable range 5, end address                       |  |  |  |  |  |

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor

SPRS708E—March 2014



### Table 7-54MPU2 Registers (Part 2 of 2)

| lable 7-54   | MPU2 Registers (Part 2 | of 2)                                                    |  |  |  |
|--------------|------------------------|----------------------------------------------------------|--|--|--|
| Offset       | Name                   | Description                                              |  |  |  |
| 258h         | PROG5_MPPA             | Programmable range 5, memory page protection attributes  |  |  |  |
| 260h         | PROG6_MPSAR            | Programmable range 6, start address                      |  |  |  |
| 264h         | PROG6_MPEAR            | Programmable range 6, end address                        |  |  |  |
| 268h         | PROG6_MPPA             | Programmable range 6, memory page protection attributes  |  |  |  |
| 270h         | PROG7_MPSAR            | Programmable range 7, start address                      |  |  |  |
| 274h         | PROG7_MPEAR            | Programmable range 7, end address                        |  |  |  |
| 278h         | PROG7_MPPA             | Programmable range 7, memory page protection attributes  |  |  |  |
| 280h         | PROG8_MPSAR            | Programmable range 8, start address                      |  |  |  |
| 284h         | PROG8_MPEAR            | Programmable range 8, end address                        |  |  |  |
| 288h         | PROG8_MPPA             | Programmable range 8, memory page protection attributes  |  |  |  |
| 290h         | PROG9_MPSAR            | Programmable range 9, start address                      |  |  |  |
| 294h         | PROG9_MPEAR            | Programmable range 9, end address                        |  |  |  |
| 298h         | PROG9_MPPA             | Programmable range 9, memory page protection attributes  |  |  |  |
| 2A0h         | PROG10_MPSAR           | Programmable range 10, start address                     |  |  |  |
| 2A4h         | PROG10_MPEAR           | Programmable range 10, end address                       |  |  |  |
| 2A8h         | PROG10_MPPA            | Programmable range 10, memory page protection attributes |  |  |  |
| 2B0h         | PROG11_MPSAR           | Programmable range 11, start address                     |  |  |  |
| 2B4h         | PROG11_MPEAR           | Programmable range 11, end address                       |  |  |  |
| 2B8h         | PROG11_MPPA            | Programmable range 11, memory page protection attributes |  |  |  |
| 2C0h         | PROG12_MPSAR           | Programmable range 12, start address                     |  |  |  |
| 2C4h         | PROG12_MPEAR           | Programmable range 12, end address                       |  |  |  |
| 2C8h         | PROG12_MPPA            | Programmable range 12, memory page protection attributes |  |  |  |
| 2D0h         | PROG13_MPSAR           | Programmable range 13, start address                     |  |  |  |
| 2D4h         | PROG13_MPEAR           | Programmable range 13, end address                       |  |  |  |
| 2Dh          | PROG13_MPPA            | Programmable range 13, memory page protection attributes |  |  |  |
| 2E0h         | PROG14_MPSAR           | Programmable range 14, start address                     |  |  |  |
| 2E4h         | PROG14_MPEAR           | Programmable range 14, end address                       |  |  |  |
| 2E8h         | PROG14_MPPA            | Programmable range 14, memory page protection attributes |  |  |  |
| 2F0h         | PROG15_MPSAR           | Programmable range 15, start address                     |  |  |  |
| 2F4h         | PROG15_MPEAR           | Programmable range 15, end address                       |  |  |  |
| 2F8h         | PROG15_MPPA            | Programmable range 15, memory page protection attributes |  |  |  |
| 300h         | FLTADDRR               | Fault address                                            |  |  |  |
| 304h         | FLTSTAT                | Fault status                                             |  |  |  |
| 308h         | FLTCLR                 | Fault clear                                              |  |  |  |
| End of Table | 7-54                   |                                                          |  |  |  |
|              |                        |                                                          |  |  |  |

### Table 7-55MPU3 Registers (Part 1 of 2)

| Offset | Name     | Description                   |  |  |  |  |
|--------|----------|-------------------------------|--|--|--|--|
| 0h     | REVID    | Revision ID                   |  |  |  |  |
| 4h     | CONFIG   | onfiguration                  |  |  |  |  |
| 10h    | IRAWSTAT | Interrupt raw status/set      |  |  |  |  |
| 14h    | IENSTAT  | Interrupt enable status/clear |  |  |  |  |
| 18h    | IENSET   | Interrupt enable              |  |  |  |  |



| Offset     | Name        | Description                                             |  |  |  |  |  |
|------------|-------------|---------------------------------------------------------|--|--|--|--|--|
| 1Ch        | IENCLR      | Interrupt enable clear                                  |  |  |  |  |  |
| 20h        | EOI         | End of interrupt                                        |  |  |  |  |  |
| 200h       | PROG0_MPSAR | Programmable range 0, start address                     |  |  |  |  |  |
| 204h       | PROG0_MPEAR | Programmable range 0, end address                       |  |  |  |  |  |
| 208h       | PROG0_MPPA  | Programmable range 0, memory page protection attributes |  |  |  |  |  |
| 300h       | FLTADDRR    | Fault address                                           |  |  |  |  |  |
| 304h       | FLTSTAT     | Fault status                                            |  |  |  |  |  |
| 308h       | FLTCLR      | Fault clear                                             |  |  |  |  |  |
| End of Tab | le 7-55     |                                                         |  |  |  |  |  |

### Table 7-55MPU3 Registers (Part 2 of 2)

### 7.11.1.2 Device-Specific MPU Registers

### 7.11.1.2.1 Configuration Register (CONFIG)

The configuration register (CONFIG) contains the configuration value of the MPU.

### Figure 7-35 Configuration Register (CONFIG)

|              |      | 31     | 24   | 23   | 20    | 19   | 16   | 15   | 12    | 11    | 1   | 0              |
|--------------|------|--------|------|------|-------|------|------|------|-------|-------|-----|----------------|
|              |      | ADDR_W | IDTH | NUM_ | FIXED | NUM_ | PROG | NUM  | _AIDS | Reser | ved | ASSUME_ALLOWED |
|              | MPU0 | R-0    |      | R    | -0    | R-16 |      | R-16 |       | R-0   |     | R-1            |
| Reset Values | MPU1 | R-0    |      | R    | -0    | R    | R-5  |      | R-16  |       | )   | R-1            |
| Reset values | MPU2 | R-0    |      | R    | -0    | R-16 |      | R-16 |       | R-0   |     | R-1            |
|              | MPU3 | R-0    |      | R    | -0    | R    | ·1   | R-   | 16    | R-C   | )   | R-1            |

Legend: R = Read only; -n = value after reset

#### Table 7-56 Configuration Register (CONFIG) Field Descriptions

| Bit       | Field          | Description                                                                                                                                                                                              |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 – 24   | ADDR_WIDTH     | Address alignment for range checking<br>0 = 1KB alignment<br>6 = 64KB alignment                                                                                                                          |
| 23 – 20   | NUM_FIXED      | Number of fixed address ranges                                                                                                                                                                           |
| 19 – 16   | NUM_PROG       | Number of programmable address ranges                                                                                                                                                                    |
| 15 – 12   | NUM_AIDS       | Number of supported AIDs                                                                                                                                                                                 |
| 11 – 1    | Reserved       | Reserved. These bits will always reads as 0.                                                                                                                                                             |
| 0         | ASSUME_ALLOWED | Assume allowed bit. When an address is not covered by any MPU protection range, this bit determines whether the transfer is assumed to be allowed or not.<br>0 = Assume disallowed<br>1 = Assume allowed |
| End of Ta | able 7-56      |                                                                                                                                                                                                          |



### 7.11.2 MPU Programmable Range Registers

### 7.11.2.1 Programmable Range n Start Address Register (PROGn\_MPSAR)

The programmable address start register holds the start address for the range. This register is writeable only by a supervisor entity. If NS = 0 (non-secure mode) in the associated MPPA register, then the register is also writeable only by a secure entity.

The start address must be aligned on a page boundary. The size of the page is 1K byte. The size of the page determines the width of the address field in MPSAR and MPEAR.

#### Figure 7-36 Programmable Range n Start Address Register (PROGn\_MPSAR)

| 31 10      | 9 0      |
|------------|----------|
| START_ADDR | Reserved |
| R/W        | R        |

Legend: R = Read only; R/W = Read/Write

#### Table 7-57 Programmable Range n Start Address Register (PROGn\_MPSAR) Field Descriptions

| Bit             | Field             | Description                               |  |  |  |  |
|-----------------|-------------------|-------------------------------------------|--|--|--|--|
| 31 – 10         | START_ADDR        | Start address for range <i>n</i> .        |  |  |  |  |
| 9 – 0           | Reserved          | Reserved and these bits always read as 0. |  |  |  |  |
| End of Table 7- | End of Table 7-57 |                                           |  |  |  |  |

### 7.11.2.2 Programmable Range n End Address Register (PROGn\_MPEAR)

The programmable address end register holds the end address for the range. This register is writeable only by a supervisor entity. If NS = 0 (non-secure mode) in the associated MPPA register, then the register is also writeable only by a secure entity.

The end address must be aligned on a page boundary. The size of the page depends on the MPU number. The page size for MPU1 is 1K byte and for MPU2 it is 64K bytes. The size of the page determines the width of the address field in MPSAR and MPEAR

#### Figure 7-37 Programmable Range n End Address Register (PROGn\_MPEAR)

| 31       | 10 | 9 |          | 0 |
|----------|----|---|----------|---|
| END_ADDR |    |   | Reserved |   |
| R/W      |    |   | R        |   |

Legend: R = Read only; R/W = Read/Write

#### Table 7-58 Programmable Range n End Address Register (PROGn\_MPEAR) Field Descriptions

| Bit             | Field             | Description                                  |  |  |  |  |
|-----------------|-------------------|----------------------------------------------|--|--|--|--|
| 31 – 10         | END_ADDR          | End address for range <i>n</i> .             |  |  |  |  |
| 9 – 0           | Reserved          | Reserved and these bits always read as 3FFh. |  |  |  |  |
| End of Table 7- | End of Table 7-58 |                                              |  |  |  |  |

### 7.11.2.3 Programmable Range *n* Memory Protection Page Attribute Register (PROG*n*\_MPPA)

The programmable address memory protection page attribute register holds the permissions for the region. This register is writeable only by a non-debug supervisor entity. If NS = 0 (secure mode), then the register is also writeable only by a non-debug secure entity. The NS bit is writeable only by a non-debug secure entity. For debug accesses, the register is writeable only when NS = 1 or EMU = 1.

| 31   |      |          |      | 26   | 25    | 24    | 23    | 22    | 21    | 20    | 19   | 18   | 17   | 16   | 15   |
|------|------|----------|------|------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|
|      |      | Reserved |      |      | AID15 | AID14 | AID13 | AID12 | AID11 | AID10 | AID9 | AID8 | AID7 | AID6 | AID5 |
|      |      | R        |      |      | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  | R/W  | R/W  | R/W  | R/W  |
| 14   | 13   | 12       | 11   | 10   | 9     | 8     | 8     | 7     | 6     | 5     | 4    | 3    | 2    | 1    | 0    |
| AID4 | AID3 | AID2     | AID1 | AID0 | AIDX  | Rese  | erved | NS    | EMU   | SR    | SW   | SX   | UR   | UW   | UX   |
| R/W  | R/W  | R/W      | R/W  | R/W  | R/W   |       | R     | R/W   | R/W   | R/W   | R/W  | R/W  | R/W  | R/W  | R/W  |

#### Figure 7-38 Programmable Range *n* Memory Protection Page Attribute Register (PROGn\_MPPA)

Legend: R = Read only; R/W = Read/Write

#### Table 7-59 Programmable Range n Memory Protection Page Attribute Register (PROGn\_MPPA) Field Descriptions (Part 1 of 2)

| Bit     | Field    | Description                                                                                                          |
|---------|----------|----------------------------------------------------------------------------------------------------------------------|
| 31 - 26 | Reserved | Reserved. These bits will always reads as 0.                                                                         |
| 25      | AID15    | Controls permission check of ID = 15<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 24      | AID14    | Controls permission check of ID = 14<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 23      | AID13    | Controls permission check of ID = 13<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 22      | AID12    | Controls permission check of ID = 12<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 21      | AID11    | Controls permission check of ID = 11<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 20      | AID10    | Controls permission check of ID = 10<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions |
| 19      | AID9     | Controls permission check of ID = 9<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions  |
| 18      | AID8     | Controls permission check of ID = 8<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions  |
| 17      | AID7     | Controls permission check of ID = 7<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions  |
| 16      | AID6     | Controls permission check of ID = 6<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions  |

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor





# Table 7-59 Programmable Range n Memory Protection Page Attribute Register (PROGn\_MPPA) Field Descriptions (Part 2 of 2)

|          | •          | f 2)                                                                                                                             |
|----------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| Bit      | Field      | Description                                                                                                                      |
| 15       | AID5       | Controls permission check of ID = 5<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 14       | AID4       | Controls permission check of ID = 4<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 13       | AID3       | Controls permission check of ID = 3<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 12       | AID2       | Controls permission check of ID = 2<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 11       | AID1       | Controls permission check of ID = 1<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 10       | AID0       | Controls permission check of ID = 0<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions              |
| 9        | AIDX       | Controls permission check of ID > 15<br>0 = AID is not checked for permissions<br>1 = AID is checked for permissions             |
| 8        | Reserved   | Always reads as 0.                                                                                                               |
| 7        | NS         | Non-secure access permission<br>0 = Only secure access allowed.<br>1 = Non-secure access allowed.                                |
| 6        | EMU        | Emulation (debug) access permission. This bit is ignored if NS = 1<br>0 = Debug access not allowed.<br>1 = Debug access allowed. |
| 5        | SR         | Supervisor Read permission<br>0 = Access not allowed.<br>1 = Access allowed.                                                     |
| 4        | SW         | Supervisor Write permission<br>0 = Access not allowed.<br>1 = Access allowed.                                                    |
| 3        | SX         | Supervisor Execute permission<br>0 = Access not allowed.<br>1 = Access allowed.                                                  |
| 2        | UR         | User Read permission<br>0 = Access not allowed.<br>1 = Access allowed                                                            |
| 1        | UW         | User Write permission<br>0 = Access not allowed.<br>1 = Access allowed.                                                          |
| 0        | UX         | User Execute permission<br>0 = Access not allowed.<br>1 = Access allowed.                                                        |
| End of T | able 7-591 |                                                                                                                                  |



### 7.11.2.4 MPU Registers Reset Values

### Table 7-60 Programmable Range n Registers Reset Values for MPU0

|                       |                                | MPU0 (Main CFG TeraNet)      |                                                  |                             |  |  |  |  |  |
|-----------------------|--------------------------------|------------------------------|--------------------------------------------------|-----------------------------|--|--|--|--|--|
| Programmable<br>Range | Start Address<br>(PROGn_MPSAR) | End Address<br>(PROGn_MPEAR) | Memory Page Protection<br>Attribute (PROGn_MPPA) | Memory Protection           |  |  |  |  |  |
| PROG0                 | 0x01D0_0000                    | 0x01D8_03FF                  | 0x03FF_FCB6                                      | Tracers                     |  |  |  |  |  |
| PROG1                 | 0x01F0_0000                    | 0x01F7_FFFF                  | 0x03FF_FC80                                      | Reserved                    |  |  |  |  |  |
| PROG2                 | 0x0200_0000                    | 0x0209_FFFF                  | 0x03FF_FCB6                                      | NETCP                       |  |  |  |  |  |
| PROG3                 | 0x01E0_0000                    | 0x01EB_FFFF                  | 0x03FF_FCB6                                      | TSIP                        |  |  |  |  |  |
| PROG4                 | 0x021C_0000                    | 0x021E_0FFF                  | 0x03FF_FC80                                      | Reserved                    |  |  |  |  |  |
| PROG5                 | 0x021F_0000                    | 0x021F_7FFF                  | 0x03FF_FC80                                      | Reserved                    |  |  |  |  |  |
| PROG6                 | 0x0220_0000                    | 0x022F_03FF                  | 0x03FF_FCB6                                      | Timers                      |  |  |  |  |  |
| PROG7                 | 0x0231_0000                    | 0x0231_03FF                  | 0x03FF_FCB4                                      | PLL                         |  |  |  |  |  |
| PROG8                 | 0x0232_0000                    | 0x0232_03FF                  | 0x03FF_FCB4                                      | GPIO                        |  |  |  |  |  |
| PROG9                 | 0x0233_0000                    | 0x0233_03FF                  | 0x03FF_FCB4                                      | SmartReflex                 |  |  |  |  |  |
| PROG10                | 0x0235_0000                    | 0x0235_0FFF                  | 0x03FF_FCB4                                      | PSC                         |  |  |  |  |  |
| PROG11                | 0x0240_0000                    | 0x024B_3FFF                  | 0x03FF_FCB6                                      | DEBUG_SS, Tracer Formatters |  |  |  |  |  |
| PROG12                | 0x0250_0000                    | 0x0252_03FF                  | 0x03FF_FCB4                                      | Reserved                    |  |  |  |  |  |
| PROG13                | 0x0253_0000                    | 0x0254_03FF                  | 0x03FF_FCB6                                      | I <sup>2</sup> C, UART      |  |  |  |  |  |
| PROG14                | 0x0260_0000                    | 0x0260_FFFF                  | 0x03FF_FCB4                                      | CICs                        |  |  |  |  |  |
| PROG15                | 0x0262_0000                    | 0x0262_07FF                  | 0x03FF_FCB4                                      | Chip-level Registers        |  |  |  |  |  |
| End of Table 7-6      | 0                              |                              |                                                  | •                           |  |  |  |  |  |

#### Table 7-61 Programmable Range n Registers Reset Values for MPU1

|                       | MPU1 (QM_SS DATA PORT)         |                              |                                                  |                         |  |  |
|-----------------------|--------------------------------|------------------------------|--------------------------------------------------|-------------------------|--|--|
| Programmable<br>Range | Start Address<br>(PROGn_MPSAR) | End Address<br>(PROGn_MPEAR) | Memory Page Protection<br>Attribute (PROGn_MPPA) | Memory Protection       |  |  |
| PROG0                 | 0x3400_0000                    | 0x3401_FFFF                  | 0x03FF_FC80                                      | Queue Manager subsystem |  |  |
| PROG1                 | 0x3402_0000                    | 0x3405_FFFF                  | 0x000F_FCB6                                      | data                    |  |  |
| PROG2                 | 0x3406_0000                    | 0x3406_7FFF                  | 0x03FF_FCB4                                      |                         |  |  |
| PROG3                 | 0x3406_8000                    | 0x340B_7FFF                  | 0x03FF_FC80                                      |                         |  |  |
| PROG4                 | 0x340B_8000                    | 0x340B_FFFF                  | 0x03FF_FCB6                                      |                         |  |  |
| End of Table 7-6      | 1                              |                              | ·                                                |                         |  |  |



 Table 7-62
 Programmable Range n Registers Reset Values for MPU2

|                       |                                | MPU2 (QM_                    | SS CFG PORT)                                     |                         |
|-----------------------|--------------------------------|------------------------------|--------------------------------------------------|-------------------------|
| Programmable<br>Range | Start Address<br>(PROGn_MPSAR) | End Address<br>(PROGn_MPEAR) | Memory Page Protection<br>Attribute (PROGn_MPPA) | Memory Protection       |
| PROG0                 | 0x02A0_0000                    | 0x02A1_FFFF                  | 0x03FF_FCA4                                      | Queue Manager subsystem |
| PROG1                 | 0x02A2_0000                    | 0x02A3_FFFF                  | 0x000F_FCB6                                      | configuration           |
| PROG2                 | 0x02A4_0000                    | 0x02A5_FFFF                  | 0x000F_FCB6                                      |                         |
| PROG3                 | 0x02A6_0000                    | 0x02A6_7FFF                  | 0x03FF_FCB4                                      |                         |
| PROG4                 | 0x02A6_8000                    | 0x02A6_8FFF                  | 0x03FF_FCB4                                      |                         |
| PROG5                 | 0x02A6_9000                    | 0x02A6_9FFF                  | 0x03FF_FCB4                                      |                         |
| PROG6                 | 0x02A6_A000                    | 0x02A6_AFFF                  | 0x03FF_FCB4                                      |                         |
| PROG7                 | 0x02A6_B000                    | 0x02A6_BFFF                  | 0x03FF_FCB4                                      |                         |
| PROG8                 | 0x02A6_C000                    | 0x02A6_DFFF                  | 0x03FF_FCB4                                      |                         |
| PROG9                 | 0x02A6_E000                    | 0x02A6_FFFF                  | 0x03FF_FCB4                                      |                         |
| PROG10                | 0x02A8_0000                    | 0x02A8_FFFF                  | 0x03FF_FCA4                                      |                         |
| PROG11                | 0x02A9_0000                    | 0x02A9_FFFF                  | 0x03FF_FCB4                                      |                         |
| PROG12                | 0x02AA_0000                    | 0x02AA_7FFF                  | 0x03FF_FCB4                                      |                         |
| PROG13                | 0x02AA_8000                    | 0x02AA_FFFF                  | 0x03FF_FCB4                                      |                         |
| PROG14                | 0x02AB_0000                    | 0x02AB_7FFF                  | 0x03FF_FCB4                                      |                         |
| PROG15                | 0x02AB_8000                    | 0x02AB_FFFF                  | 0x03FF_FCB6                                      |                         |
| End of Table 7-6      | 2                              |                              |                                                  |                         |

### Table 7-63 Programmable Range n Registers Reset Values for MPU3

|                       | MPU3 (Semaphore)               |                              |                                                   |                   |  |  |  |
|-----------------------|--------------------------------|------------------------------|---------------------------------------------------|-------------------|--|--|--|
| Programmable<br>Range | Start Address<br>(PROGn_MPSAR) | End Address<br>(PROGn_MPEAR) | Memory Page Protection<br>Attributes (PROGn_MPPA) | Memory Protection |  |  |  |
| PROG0                 | 0x0264_0000                    | 0x0264_07FF                  | 0x0003_FCB6                                       | Semaphore         |  |  |  |
| End of Table 7-63     |                                |                              |                                                   |                   |  |  |  |



### 7.12 DDR3 Memory Controller

The 64-bit DDR3 Memory Controller bus of the TMS320C6672 is used to interface to JEDEC standard-compliant DDR3 SDRAM devices. The DDR3 external bus interfaces only to DDR3 SDRAM devices; it does not share the bus with any other types of peripherals.

### 7.12.1 DDR3 Memory Controller Device-Specific Information

The TMS320C6672 includes one 64-bit wide 1.5-V DDR3 SDRAM EMIF interface. The DDR3 interface can operate at 800 Mega Transfers per Second (MTS), 1066 MTS, 1333 MTS, and 1600 MTS.

Due to the complicated nature of the interface, a limited number of topologies are supported to provide a 16-bit, 32-bit, or 64-bit interface.

The DDR3 electrical requirements are fully specified in the DDR Jedec Specification JESD79-3C. Standard DDR3 SDRAMs are available in 8- and 16-bit versions, allowing for the following bank topologies to be supported by the interface:

- 72-bit: Five 16-bit SDRAMs (including 8 bits of ECC)
- 72-bit: Nine 8-bit SDRAMs (including 8 bits of ECC)
- 36-bit: Three 16-bit SDRAMs (including 4 bits of ECC)
- 36-bit: Five 8-bit SDRAMs (including 4 bits of ECC)
- 64-bit: Four 16-bit SDRAMs
- 64-bit: Eight 8-bit SDRAMs
- 32-bit: Two 16-bit SDRAMs
- 32-bit: Four 8-bit SDRAMs
- 16-bit: One 16-bit SDRAM
- 16-bit: Two 8-bit SDRAM

The approach to specifying interface timing for the DDR3 memory bus is different than on other interfaces such as  $I^2C$  or SPI. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. For the DDR3 memory bus, the approach is to specify compatible DDR3 devices and provide the printed circuit board (PCB) solution and guidelines directly to the user.

### 7.12.2 DDR3 Memory Controller Race Condition Consideration

A race condition may exist when certain masters write data to the DDR3 memory controller. For example, if master A passes a software message via a buffer in external memory and does not wait for an indication that the write completes, before signaling to master B that the message is ready, when master B attempts to read the software message, then the master B read may bypass the master A write and, thus, master B may read stale data and, therefore, receive an incorrect message.

Some master peripherals (e.g., EDMA3 transfer controllers with TCCMOD=0) will always wait for the write to complete before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have a hardware specification of write-read ordering, it may be necessary to specify data ordering via software.

If master A does not wait for indication that a write is complete, it must perform the following workaround:

- 1. Perform the required write to DDR3 memory space.
- 2. Perform a dummy write to the DDR3 memory controller module ID and revision register.
- 3. Perform a dummy read to the DDR3 memory controller module ID and revision register.
- 4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The completion of the read in step 3 ensures that the previous write was done.



### 7.12.3 DDR3 Memory Controller Electrical Data/Timing

The *DDR3 Design Requirements for KeyStone Devices* in "Related Documentation from Texas Instruments" on page 72 specifies a complete DDR3 interface solution as well as a list of compatible DDR3 devices. The DDR3 electrical requirements are fully specified in the DDR3 Jedec Specification JESD79-3C. TI has performed the simulation and system characterization to ensure all DDR3 interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface.

Note—TI supports *only* designs that follow the board design guidelines outlined in the application report.



## 7.13 I<sup>2</sup>C Peripheral

The inter-integrated circuit ( $I^2C$ ) module provides an interface between DSP and other devices compliant with Philips Semiconductors Inter-IC bus ( $I^2C$  bus) specification version 2.1 and connected by way of an  $I^2C$  bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSP through the  $I^2C$  module.

## 7.13.1 I<sup>2</sup>C Device-Specific Information

The TMS320C6672 device includes an I<sup>2</sup>C peripheral module.

**Note**—When using the  $I^2C$  module, ensure there are external pullup resistors on the SDA and SCL pins.

The  $I^2C$  modules on the C6672 may be used by the DSP to control local peripheral ICs (DACs, ADCs, etc.) or may be used to communicate with other controllers in a system or to implement a user interface.

The I<sup>2</sup>C port is compatible with Philips I<sup>2</sup>C specification revision 2.1 (January 2000) and supports:

- Fast mode up to 400 Kbps (no fail-safe I/O buffers)
- Noise filter to remove noise 50 ns or less
- 7-bit and 10-bit device addressing modes
- Multi-master (transmit/receive) and slave (transmit/receive) functionality
- Events: DMA, interrupt, or polling
- Slew-rate limited open-drain output buffers



Figure 7-39 shows a block diagram of the  $I^2C$  module.

### Figure 7-39 I<sup>2</sup>C Module Block Diagram



Shading denotes control/status registers.

## 7.13.2 I<sup>2</sup>C Peripheral Register Description(s)

| Hex Address Range Register |        | Register Name                                     |  |
|----------------------------|--------|---------------------------------------------------|--|
| 0253 0000                  | ICOAR  | I <sup>2</sup> C Own Address Register             |  |
| 0253 0004                  | ICIMR  | I <sup>2</sup> C Interrupt Mask/Status Register   |  |
| 0253 0008                  | ICSTR  | I <sup>2</sup> C Interrupt Status Register        |  |
| 0253 000C                  | ICCLKL | I <sup>2</sup> C Clock Low-Time Divider Register  |  |
| 0253 0010                  | ICCLKH | I <sup>2</sup> C Clock High-Time Divider Register |  |
| 0253 0014                  | ICCNT  | I <sup>2</sup> C Data Count Register              |  |
| 0253 0018                  | ICDRR  | I <sup>2</sup> C Data Receive Register            |  |
| 0253 001C                  | ICSAR  | I <sup>2</sup> C Slave Address Register           |  |
| 0253 0020                  | ICDXR  | I <sup>2</sup> C Data Transmit Register           |  |
| 0253 0024                  | ICMDR  | I <sup>2</sup> C Mode Register                    |  |
| 0253 0028                  | ICIVR  | I <sup>2</sup> C Interrupt Vector Register        |  |
| 0253 002C                  | ICEMDR | l <sup>2</sup> C Extended Mode Register           |  |



| Table 7-64 | I <sup>2</sup> C Registers (Part 2 of 2) |  |
|------------|------------------------------------------|--|
|------------|------------------------------------------|--|

| Hex Address Range     | Register | Register Name                                                              |
|-----------------------|----------|----------------------------------------------------------------------------|
| 0253 0030             | ICPSC    | I <sup>2</sup> C Prescaler Register                                        |
| 0253 0034             | ICPID1   | I <sup>2</sup> C Peripheral Identification Register 1 [Value: 0x0000 0105] |
| 0253 0038             | ICPID2   | 1 <sup>2</sup> C Peripheral Identification Register 2 [Value: 0x0000 0005] |
| 0253 003C - 0253 007F | -        | Reserved                                                                   |
| End of Table 7-64     |          |                                                                            |

## 7.13.3 I<sup>2</sup>C Electrical Data/Timing

### 7.13.3.1 Inter-Integrated Circuits (I<sup>2</sup>C) Timing

#### I<sup>2</sup>C Timing Requirements <sup>(1)</sup> Table 7-65

(see Figure 7-40)

|     |                               |                                                                               | Standard | Mode | Fast Mod                              | e                  |       |
|-----|-------------------------------|-------------------------------------------------------------------------------|----------|------|---------------------------------------|--------------------|-------|
| No. |                               |                                                                               | Min      | Max  | Min                                   | Max                | Units |
| 1   | t <sub>c(SCL)</sub>           | Cycle time, SCL                                                               | 10       |      | 2.5                                   |                    | μs    |
| 2   | t <sub>su(SCLH-SDAL)</sub>    | Setup time, SCL high before SDA low (for a repeated START condition)          | 4.7      |      | 0.6                                   |                    | μs    |
| 3   | t <sub>h(SDAL-SCLL)</sub>     | Hold time, SCL low after SDA low (for a START and a repeated START condition) | 4        |      | 0.6                                   |                    | μs    |
| 4   | t <sub>w(SCLL)</sub>          | Pulse duration, SCL low                                                       | 4.7      |      | 1.3                                   |                    | μs    |
| 5   | t <sub>w(SCLH)</sub>          | Pulse duration, SCL high                                                      | 4        |      | 0.6                                   |                    | μs    |
| 6   | t <sub>su(SDAV-SCLH)</sub>    | Setup time, SDA valid before SCL high                                         | 250      |      | 100 <sup>(2)</sup>                    |                    | ns    |
| 7   | t <sub>h(SCLL-SDAV)</sub>     | Hold time, SDA valid after SCL low (For I <sup>2</sup> C bus devices)         | 0 (3)    | 3.45 | 0 <sup>(3)</sup>                      | 0.9 <sup>(4)</sup> | μs    |
| 8   | t <sub>w(SDAH)</sub>          | Pulse duration, SDA high between STOP and START conditions                    | 4.7      |      | 1.3                                   |                    | μs    |
| 9   | t <sub>r(SDA)</sub>           | Rise time, SDA                                                                |          | 1000 | $20 + 0.1C_{b}^{(5)}$                 | 300                | ns    |
| 10  | t <sub>r(SCL)</sub>           | Rise time, SCL                                                                |          | 1000 | $20 + 0.1C_{b}^{(5)}$                 | 300                | ns    |
| 11  | t <sub>f(SDA)</sub>           | Fall time, SDA                                                                |          | 300  | 20 + 0.1C <sub>b</sub> <sup>(5)</sup> | 300                | ns    |
| 12  | t <sub>f(SCL)</sub>           | Fall time, SCL                                                                |          | 300  | 20 + 0.1C <sub>b</sub> <sup>(5)</sup> | 300                | ns    |
| 13  | t <sub>su(SCLH-SDAH)</sub>    | Setup time, SCL high before SDA high (for STOP condition)                     | 4        |      | 0.6                                   |                    | μs    |
| 14  | t <sub>w(SP)</sub>            | Pulse duration, spike (must be suppressed)                                    |          |      | 0                                     | 50                 | ns    |
| 15  | C <sub>b</sub> <sup>(5)</sup> | Capacitive load for each bus line                                             |          | 400  |                                       | 400                | pF    |
| End | of Table 7-65                 |                                                                               |          |      |                                       |                    |       |

1 The I<sup>2</sup>C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down

2 A Fast-mode l<sup>2</sup>C-bus<sup>™</sup> device can be used in a Standard-mode l<sup>2</sup>C-bus<sup>™</sup> system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t<sub>r</sub> max + t<sub>su(SDA-SCLH)</sub> = 1000 + 250 = 1250 ns (according to the Standard-mode l<sup>2</sup>C-Bus Specification) before the SCL line is released.
 3 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V<sub>IHmin</sub> of the SCL signal) to bridge the undefined region of the falling edge of SCL

of SCL.

4 The maximum  $t_{h(SDA-SCLL)}$  has to be met only if the device does not stretch the low period  $[t_{w(SCLL)}]$  of the SCL signal.

5 C<sub>b</sub> = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.

## TMS320C6672 Multicore Fixed and Floating-Point Digital Signal Processor



SPRS708E—March 2014

### Figure 7-40I<sup>2</sup>C Receive Timings



# Table 7-66 I<sup>2</sup>C Switching Characteristics<sup>(1)</sup>

(see Figure 7-41)

|       |                            |                                                                               | Standard | Mode | Fast Mode             |     |      |
|-------|----------------------------|-------------------------------------------------------------------------------|----------|------|-----------------------|-----|------|
| No.   |                            | Parameter                                                                     | Min      | Max  | Min                   | Max | Unit |
| 16    | t <sub>c(SCL)</sub>        | Cycle time, SCL                                                               | 10       |      | 2.5                   |     | ms   |
| 17    | t <sub>su(SCLH-SDAL)</sub> | Setup time, SCL high to SDA low (for a repeated START condition)              | 4.7      |      | 0.6                   |     | ms   |
| 18    | t <sub>h(SDAL-SCLL)</sub>  | Hold time, SDA low after SCL low (for a START and a repeated START condition) | 4        |      | 0.6                   |     | ms   |
| 19    | t <sub>w(SCLL)</sub>       | Pulse duration, SCL low                                                       | 4.7      |      | 1.3                   |     | ms   |
| 20    | t <sub>w(SCLH)</sub>       | Pulse duration, SCL high                                                      | 4        |      | 0.6                   |     | ms   |
| 21    | t <sub>d(SDAV-SDLH)</sub>  | Delay time, SDA valid to SCL high                                             | 250      |      | 100                   |     | ns   |
| 22    | t <sub>v(SDLL-SDAV)</sub>  | Valid time, SDA valid after SCL low (For I <sup>2</sup> C bus devices)        | 0        |      | 0                     | 0.9 | ms   |
| 23    | t <sub>w(SDAH)</sub>       | Pulse duration, SDA high between STOP and START conditions                    | 4.7      |      | 1.3                   |     | ms   |
| 24    | t <sub>r(SDA)</sub>        | Rise time, SDA                                                                |          | 1000 | $20 + 0.1C_{b}^{(1)}$ | 300 | ns   |
| 25    | t <sub>r(SCL)</sub>        | Rise time, SCL                                                                |          | 1000 | $20 + 0.1C_{b}^{(1)}$ | 300 | ns   |
| 26    | t <sub>f(SDA)</sub>        | Fall time, SDA                                                                |          | 300  | $20 + 0.1C_{b}^{(1)}$ | 300 | ns   |
| 27    | t <sub>f(SCL)</sub>        | Fall time, SCL                                                                |          | 300  | $20 + 0.1C_{b}^{(1)}$ | 300 | ns   |
| 28    | t <sub>d(SCLH-SDAH)</sub>  | Delay time, SCL high to SDA high (for STOP condition)                         | 4        |      | 0.6                   |     | ms   |
| 29    | Cp                         | Capacitance for each I <sup>2</sup> C pin                                     |          | 10   |                       | 10  | pF   |
| End o | of Table 7-66              |                                                                               |          | L    |                       |     |      |

1 C<sub>b</sub> = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.







7.14 SPI Peripheral

The serial peripheral interconnect (SPI) module provides an interface between the DSP and other SPI-compliant devices. The primary intent of this interface is to allow for connection to a SPI ROM for boot. The SPI module on C6672 is supported only in master mode. Additional chip-level components can also be included, such as temperature sensors or an I/O expander.

The C6672 SPI supports two modes, 3-pin and 4-pin. For the 4-pin chip-select mode, the C6672 supports up to two chip selects.

### 7.14.1 SPI Electrical Data/Timing

### 7.14.1.1 SPI Timing

# Table 7-67SPI Timing RequirementsSee Figure 7-42)

| No. |               |                                                                                      | Min | Max | Unit |
|-----|---------------|--------------------------------------------------------------------------------------|-----|-----|------|
|     |               | Master Mode Timing Diagrams — Base Timings for 3 Pin Mode                            |     |     |      |
| 7   | tsu(SDI-SPC)  | Input Setup Time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 0 | 2   |     | ns   |
| 7   | tsu(SDI-SPC)  | Input Setup Time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 1 | 2   |     | ns   |
| 7   | tsu(SDI-SPC)  | Input Setup Time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 0 | 2   |     | ns   |
| 7   | tsu(SDI-SPC)  | Input Setup Time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 1 | 2   |     | ns   |
| 8   | th(SPC-SDI)   | Input Hold Time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 0   | 5   |     | ns   |
| 8   | th(SPC-SDI)   | Input Hold Time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 1   | 5   |     | ns   |
| 8   | th(SPC-SDI)   | Input Hold Time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 0   | 5   |     | ns   |
| 8   | th(SPC-SDI)   | Input Hold Time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 1   | 5   |     | ns   |
| End | of Table 7-67 |                                                                                      |     |     |      |

## Table 7-68 SPI Switching Characteristics (Part 1 of 2)

(See Figure 7-42 and Figure 7-43)

| No. |                                                                                                                    | Parameter                                                                                                       | Min                 | Мах | Unit |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|-----|------|--|--|
|     | Master Mode Timing Diagrams — Base Timings for 3 Pin Mode                                                          |                                                                                                                 |                     |     |      |  |  |
| 1   | tc(SPC)                                                                                                            | Cycle Time, SPICLK, All Master Modes                                                                            | 3*P2 <sup>(1)</sup> |     | ns   |  |  |
| 2   | tw(SPCH)                                                                                                           | Pulse Width High, SPICLK, All Master Modes                                                                      | 0.5*tc - 1          |     | ns   |  |  |
| 3   | tw(SPCL)                                                                                                           | Pulse Width Low, SPICLK, All Master Modes                                                                       | 0.5*tc - 1          |     | ns   |  |  |
| 4   | td(SDO-SPC)                                                                                                        | Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK.<br>Polarity = 0, Phase = 0.         | 5                   |     | ns   |  |  |
| 4   | td(SDO-SPC)                                                                                                        | Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK.<br>Polarity = 0, Phase = 1.         |                     | 5   | ns   |  |  |
| 4   | td(SDO-SPC)                                                                                                        | Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK<br>Polarity = 1, Phase = 0           | 5                   |     | ns   |  |  |
| 4   | td(SDO-SPC)                                                                                                        | Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK<br>Polarity = 1, Phase = 1           | 5                   |     | ns   |  |  |
| 5   | td(SPC-SDO) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK. Polarity = 0 Phase = 0 |                                                                                                                 | 2                   | ns  |      |  |  |
| 5   | td(SPC-SDO)                                                                                                        | Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 0 Phase = $1$         | 2                   |     | ns   |  |  |
| 5   | td(SPC-SDO)                                                                                                        | Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = $1 \text{ Phase} = 0$ | 2                   |     | ns   |  |  |
| 5   | td(SPC-SDO)                                                                                                        | Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = $1 \text{ Phase} = 1$ |                     | 2   | ns   |  |  |



# Table 7-68SPI Switching Characteristics (Part 2 of 2)(See Figure 7-42 and Figure 7-43)

| No. |               | Parameter                                                                                                         | Min                 | Max                 | Unit |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|------|
| 6   | toh(SPC-SDO)  | Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 0         | 0.5*tc - 2          |                     | ns   |
| 6   | toh(SPC-SDO)  | Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 1         | 0.5*tc - 2          |                     | ns   |
| 6   | toh(SPC-SDO)  | Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 0         | 0.5*tc - 2          |                     | ns   |
| 6   | toh(SPC-SDO)  | Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 1         | 0.5*tc - 2          |                     | ns   |
|     |               | Additional SPI Master Timings — 4 Pin Mode with Chip Select                                                       | t Option            |                     |      |
| 19  | td(SCS-SPC)   | Delay from SPISCS[n] active to first SPICLK. Polarity = 0 Phase = 0                                               | 2*P2 - 5            | 2*P2 + 5            | ns   |
| 19  | td(SCS-SPC)   | Delay from <u>SPISCS[n]</u> active to first SPICLK. Polarity = 0 Phase = 1                                        | 0.5*tc + (2*P2) - 5 | 0.5*tc + (2*P2) + 5 | ns   |
| 19  | td(SCS-SPC)   | Delay from <u>SPISCS[n]</u> active to first SPICLK. Polarity = 1 Phase = 0                                        | 2*P2 - 5            | 2*P2 + 5            | ns   |
| 19  | td(SCS-SPC)   | Delay from SPISCS[n] active to first SPICLK. Polarity = 1 Phase = 1                                               | 0.5*tc + (2*P2) - 5 | 0.5*tc + (2*P2) + 5 | ns   |
| 20  | td(SPC-SCS)   | Delay from final SPICLK edge to master deasserting <u>SPISCS[n]</u> . Polarity = 0<br>Phase = 0                   | 1*P2 - 5            | 1*P2 + 5            | ns   |
| 20  | td(SPC-SCS)   | Delay from final SPICLK edge to master deasserting <u>SPISCS[n]</u> . Polarity = 0<br>Phase = 1                   | 0.5*tc + (1*P2) - 5 | 0.5*tc + (1*P2) + 5 | ns   |
| 20  | td(SPC-SCS)   | Delay from final SPICLK edge to master deasserting <u>SPISCS[n]</u> . Polarity = 1<br>Phase = 0                   | 1*P2 - 5            | 1*P2 + 5            | ns   |
| 20  | td(SPC-SCS)   | Delay from final SPICLK edge to master deasserting <u>SPISCS[n]</u> . Polarity = 1<br>Phase = 1                   | 0.5*tc + (1*P2) - 5 | 0.5*tc + (1*P2) + 5 | ns   |
|     | tw(SCSH)      | Minimum inactive time on SPISCS[n] pin between two transfers when SPISCS[n] is not held using the CSHOLD feature. | 2*P2 - 5            |                     | ns   |
| End | of Table 7-68 |                                                                                                                   | •                   |                     |      |

1 P2 = 1/SYSCLK7





#### SPI Master Mode Timing Diagrams — Base Timings for 3 Pin Mode Figure 7-42

## 7.15 HyperLink Peripheral

The TMS320C6672 includes the HyperLink bus for companion chip/die interfaces. This is a four-lane SerDes interface designed to operate at up to 12.5 Gbaud per lane. The supported data rates include 1.25 Gbaud, 3.125 Gbaud, 6.25 Gbaud, 10 Gbaud and 12.5 Gbaud. The interface is used to connect with external accelerators. The HyperLink links must be connected with DC coupling.

The interface includes the Serial Station Management Interfaces used to send power management and flow messages between devices. This consists of four LVCMOS inputs and four LVCMOS outputs configured as two 2-wire output buses and two 2-wire input buses. Each 2-wire bus includes a data signal and a clock signal.

### 7.15.1 HyperLink Device-Specific Interrupt Event

The HyperLink has 64 input events. Events 0 to 31 come from the chip level interrupt controller and events 32 to 63 are from queue-pending signals from the Queue Manager to monitor some of the transmission queue status.

| Event Number | Event      | Event Description           |
|--------------|------------|-----------------------------|
| 0            | CIC3_OUT8  | Interrupt Controller output |
| 1            | CIC3_OUT9  | Interrupt Controller output |
| 2            | CIC3_OUT10 | Interrupt Controller output |
| 3            | CIC3_OUT11 | Interrupt Controller output |
| 4            | CIC3_OUT12 | Interrupt Controller output |
| 5            | CIC3_OUT13 | Interrupt Controller output |
| 6            | CIC3_OUT14 | Interrupt Controller output |
| 7            | CIC3_OUT15 | Interrupt Controller output |
| 8            | CIC3_OUT16 | Interrupt Controller output |
| 9            | CIC3_OUT17 | Interrupt Controller output |
| 10           | CIC3_OUT18 | Interrupt Controller output |
| 11           | CIC3_OUT19 | Interrupt Controller output |
| 12           | CIC3_OUT20 | Interrupt Controller output |
| 13           | CIC3_OUT21 | Interrupt Controller output |
| 14           | CIC3_OUT22 | Interrupt Controller output |
| 15           | CIC3_OUT23 | Interrupt Controller output |
| 16           | CIC3_OUT24 | Interrupt Controller output |
| 17           | CIC3_OUT25 | Interrupt Controller output |
| 18           | CIC3_OUT26 | Interrupt Controller output |
| 19           | CIC3_OUT27 | Interrupt Controller output |
| 20           | CIC3_OUT28 | Interrupt Controller output |
| 21           | CIC3_OUT29 | Interrupt Controller output |
| 22           | CIC3_OUT30 | Interrupt Controller output |
| 23           | CIC3_OUT31 | Interrupt Controller output |
| 24           | CIC3_OUT32 | Interrupt Controller output |
| 25           | CIC3_OUT33 | Interrupt Controller output |
| 26           | CIC3_OUT34 | Interrupt Controller output |
| 27           | CIC3_OUT35 | Interrupt Controller output |
| 28           | CIC3_OUT36 | Interrupt Controller output |
| 29           | CIC3_OUT37 | Interrupt Controller output |

Table 7-69HyperLink Events for C6672 (Part 1 of 2)

| TMS320  | DC6672                                               |
|---------|------------------------------------------------------|
| Multico | re Fixed and Floating-Point Digital Signal Processor |
|         | March 2014                                           |



### Table 7-69HyperLink Events for C6672 (Part 2 of 2)

| Table 7-69       | HyperLink Events for C6672 (I | Part 2 of 2)                |
|------------------|-------------------------------|-----------------------------|
| Event Number     | Event                         | Event Description           |
| 30               | CIC3_OUT38                    | Interrupt Controller output |
| 31               | CIC3_OUT39                    | Interrupt Controller output |
| 32               | QM_INT_PEND_864               | Queue manager pend event    |
| 33               | QM_INT_PEND_865               | Queue manager pend event    |
| 34               | QM_INT_PEND_866               | Queue manager pend event    |
| 35               | QM_INT_PEND_867               | Queue manager pend event    |
| 36               | QM_INT_PEND_868               | Queue manager pend event    |
| 37               | QM_INT_PEND_869               | Queue manager pend event    |
| 38               | QM_INT_PEND_870               | Queue manager pend event    |
| 39               | QM_INT_PEND_871               | Queue manager pend event    |
| 40               | QM_INT_PEND_872               | Queue manager pend event    |
| 41               | QM_INT_PEND_873               | Queue manager pend event    |
| 42               | QM_INT_PEND_874               | Queue manager pend event    |
| 43               | QM_INT_PEND_875               | Queue manager pend event    |
| 44               | QM_INT_PEND_876               | Queue manager pend event    |
| 45               | QM_INT_PEND_877               | Queue manager pend event    |
| 46               | QM_INT_PEND_878               | Queue manager pend event    |
| 47               | QM_INT_PEND_879               | Queue manager pend event    |
| 48               | QM_INT_PEND_880               | Queue manager pend event    |
| 49               | QM_INT_PEND_881               | Queue manager pend event    |
| 50               | QM_INT_PEND_882               | Queue manager pend event    |
| 51               | QM_INT_PEND_883               | Queue manager pend event    |
| 52               | QM_INT_PEND_884               | Queue manager pend event    |
| 53               | QM_INT_PEND_885               | Queue manager pend event    |
| 54               | QM_INT_PEND_886               | Queue manager pend event    |
| 55               | QM_INT_PEND_887               | Queue manager pend event    |
| 56               | QM_INT_PEND_888               | Queue manager pend event    |
| 57               | QM_INT_PEND_889               | Queue manager pend event    |
| 58               | QM_INT_PEND_890               | Queue manager pend event    |
| 59               | QM_INT_PEND_891               | Queue manager pend event    |
| 60               | QM_INT_PEND_892               | Queue manager pend event    |
| 61               | QM_INT_PEND_893               | Queue manager pend event    |
| 62               | QM_INT_PEND_894               | Queue manager pend event    |
| 63               | QM_INT_PEND_895               | Queue manager pend event    |
| End of Table 7-6 | 9                             |                             |
|                  |                               |                             |

### 7.15.2 HyperLink Electrical Data/Timing

The tables and figure below describe the timing requirements and switching characteristics of HyperLink peripheral.

### Table 7-70 HyperLink Peripheral Timing Requirements

See Figure 7-44, Figure 7-45, Figure 7-46

| No. |                             |                                                      | Min    | Max    | Unit |  |  |  |  |
|-----|-----------------------------|------------------------------------------------------|--------|--------|------|--|--|--|--|
|     | FL Interface                |                                                      |        |        |      |  |  |  |  |
| 1   | tc(MCMTXFLCLK)              | Clock period - MCMTXFLCLK (C1)                       | 6.4    |        | ns   |  |  |  |  |
| 2   | tw(MCMTXFLCLKH)             | High pulse width - MCMTXFLCLK                        | 0.4*C1 | 0.6*C1 | ns   |  |  |  |  |
| 3   | tw(MCMTXFLCLKL)             | Low pulse width - MCMTXFLCLK                         | 0.4*C1 | 0.6*C1 | ns   |  |  |  |  |
| 6   | tsu(MCMTXFLDAT-MCMTXFLCLKH) | Setup time - MCMTXFLDAT valid before MCMTXFLCLK high | 1      |        | ns   |  |  |  |  |
| 7   | th(MCMTXFLCLKH-MCMTXFLDAT)  | Hold time - MCMTXFLDAT valid after MCMTXFLCLK high   | 1      |        | ns   |  |  |  |  |
| 6   | tsu(MCMTXFLDAT-MCMTXFLCLKL) | Setup time - MCMTXFLDAT valid before MCMTXFLCLK low  | 1      |        | ns   |  |  |  |  |
| 7   | th(MCMTXFLCLKL-MCMTXFLDAT)  | Hold time - MCMTXFLDAT valid after MCMTXFLCLK low    | 1      |        | ns   |  |  |  |  |
|     |                             | PM Interface                                         |        |        |      |  |  |  |  |
| 1   | tc(MCMRXPMCLK)              | Clock period - MCMRXPMCLK (C3)                       | 6.4    |        | ns   |  |  |  |  |
| 2   | tw(MCMRXPMCLK)              | High pulse width - MCMRXPMCLK                        | 0.4*C3 | 0.6*C3 | ns   |  |  |  |  |
| 3   | tw(MCMRXPMCLK)              | Low pulse width - MCMRXPMCLK                         | 0.4*C3 | 0.6*C3 | ns   |  |  |  |  |
| 6   | tsu(MCMRXPMDAT-MCMRXPMCLKH) | Setup time - MCMRXPMDAT valid before MCMRXPMCLK high | 1      |        | ns   |  |  |  |  |
| 7   | th(MCMRXPMCLKH-MCMRXPMDAT)  | Hold time - MCMRXPMDAT valid after MCMRXPMCLK high   | 1      |        | ns   |  |  |  |  |
| 6   | tsu(MCMRXPMDAT-MCMRXPMCLKL) | Setup time - MCMRXPMDAT valid before MCMRXPMCLK low  | 1      |        | ns   |  |  |  |  |
| 7   | th(MCMRXPMCLKL-MCMRXPMDAT)  | Hold time - MCMRXPMDAT valid after MCMRXPMCLK low    | 1      |        | ns   |  |  |  |  |
| End | nd of Table 7-70            |                                                      |        |        |      |  |  |  |  |

### Table 7-71 HyperLink Peripheral Switching Characteristics

#### See Figure 7-44, Figure 7-45, Figure 7-46

| No. |                              | Parameter                                            | Min         | Max    | Unit |  |  |  |  |  |
|-----|------------------------------|------------------------------------------------------|-------------|--------|------|--|--|--|--|--|
|     | FL Interface                 |                                                      |             |        |      |  |  |  |  |  |
| 1   | tc(MCMRXFLCLK)               | Clock period - MCMRXFLCLK (C2)                       | 6.4         |        | ns   |  |  |  |  |  |
| 2   | tw(MCMRXFLCLKH)              | High pulse width - MCMRXFLCLK                        | 0.4*C2      | 0.6*C2 | ns   |  |  |  |  |  |
| 3   | tw(MCMRXFLCLKL)              | Low pulse width - MCMRXFLCLK                         | 0.4*C2      | 0.6*C2 | ns   |  |  |  |  |  |
| 4   | tosu(MCMRXFLDAT-MCMRXFLCLKH) | Setup time - MCMRXFLDAT valid before MCMRXFLCLK high | 0.25*C2-0.4 |        | ns   |  |  |  |  |  |
| 5   | toh(MCMRXFLCLKH-MCMRXFLDAT)  | Hold time - MCMRXFLDAT valid after MCMRXFLCLK high   | 0.25*C2-0.4 |        | ns   |  |  |  |  |  |
| 4   | tosu(MCMRXFLDAT-MCMRXFLCLKL) | Setup time - MCMRXFLDAT valid before MCMRXFLCLK low  | 0.25*C2-0.4 |        | ns   |  |  |  |  |  |
| 5   | toh(MCMRXFLCLKL-MCMRXFLDAT)  | Hold time - MCMRXFLDAT valid after MCMRXFLCLK low    | 0.25*C2-0.4 |        | ns   |  |  |  |  |  |
|     |                              | PM Interface                                         |             |        |      |  |  |  |  |  |
| 1   | tc(MCMTXPMCLK)               | Clock period - MCMTXPMCLK (C4)                       | 6.4         |        | ns   |  |  |  |  |  |
| 2   | tw(MCMTXPMCLK)               | High pulse width - MCMTXPMCLK                        | 0.4*C4      | 0.6*C4 | ns   |  |  |  |  |  |
| 3   | tw(MCMTXPMCLK)               | Low pulse width - MCMTXPMCLK                         | 0.4*C4      | 0.6*C4 | ns   |  |  |  |  |  |
| 4   | tosu(MCMTXPMDAT-MCMTXPMCLKH) | Setup time - MCMTXPMDAT valid before MCMTXPMCLK high | 0.25*C4-0.4 |        | ns   |  |  |  |  |  |
| 5   | toh(MCMTXPMCLKH-MCMTXPMDAT)  | Hold time - MCMTXPMDAT valid after MCMTXPMCLK high   | 0.25*C4-0.4 |        | ns   |  |  |  |  |  |
| 4   | tosu(MCMTXPMDAT-MCMTXPMCLKL) | Setup time - MCMTXPMDAT valid before MCMTXPMCLK low  | 0.25*C4-0.4 |        | ns   |  |  |  |  |  |
| 5   | toh(MCMTXPMCLKL-MCMTXPMDAT)  | Hold time - MCMTXPMDAT valid after MCMTXPMCLK low    | 0.25*C4-0.4 |        | ns   |  |  |  |  |  |
| End | End of Table 7-71            |                                                      |             |        |      |  |  |  |  |  |



#### Figure 7-44 HyperLink Station Management Clock Timing



#### Figure 7-45 HyperLink Station Management Transmit Timing



<xx> represents the interface that is being used: PM or FL

#### Figure 7-46 HyperLink Station Management Receive Timing



<xx> represents the interface that is being used: PM or FL



## 7.16 UART Peripheral

The universal asynchronous receiver/transmitter (UART) module provides an interface between the DSP and UART terminal interface or other UART-based peripheral. The UART is based on the industry standard TL16C550 asynchronous communications element, which, in turn, is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO (TL16C550) mode. This relieves the DSP of excessive software overhead by buffering received and transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional bits of error status per byte for the receiver FIFO.

The UART performs serial-to-parallel conversions on data received from a peripheral device and parallel-to-serial conversion on data received from the DSP. The DSP can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link. For more information on UART, see the *Universal Asynchronous Receiver/Transmitter* (*UART*) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.

# Table 7-72UART Timing Requirements(see Figure 7-47 and Figure 7-48)

| No.    |                              |                                                | Min                  | Max         | Unit |  |  |  |
|--------|------------------------------|------------------------------------------------|----------------------|-------------|------|--|--|--|
|        | Receive Timing               |                                                |                      |             |      |  |  |  |
| 4      | tw(RXSTART)                  | Pulse width, receive start bit                 | 0.96U <sup>(1)</sup> | 1.05U       | ns   |  |  |  |
| 5      | tw(RXH)                      | Pulse width, receive data/parity bit high      | 0.96U                | 1.05U       | ns   |  |  |  |
| 5      | tw(RXL)                      | Pulse width, receive data/parity bit low       | 0.96U                | 1.05U       | ns   |  |  |  |
| 6      | tw(RXSTOP1)                  | Pulse width, receive stop bit 1                | 0.96U                | 1.05U       | ns   |  |  |  |
| 6      | tw(RXSTOP15)                 | Pulse width, receive stop bit 1.5              | 1.5*(0.96U)          | 1.5*(1.05U) | ns   |  |  |  |
| 6      | tw(RXSTOP2)                  | Pulse width, receive stop bit 2                | 2*(0.96U)            | 2*(1.05U)   | ns   |  |  |  |
|        | Autoflow Timing Requirements |                                                |                      |             |      |  |  |  |
| 8      | td(CTSL-TX)                  | Delay time, CTS asserted to START bit transmit | P <sup>(2)</sup>     | 5P          | ns   |  |  |  |
| End of | End of Table 7-72            |                                                |                      |             |      |  |  |  |

1 U = UART baud time = 1/programmed baud rate

2 P = 1/SYSCLK7

### Figure 7-47 UART Receive Timing Waveform



### Figure 7-48 UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform





#### Table 7-73 **UART Switching Characteristics**

#### (See Figure 7-49 and Figure 7-50)

| No.    |                   | Parameter                                       | Min                  | Max            | Unit |  |  |  |
|--------|-------------------|-------------------------------------------------|----------------------|----------------|------|--|--|--|
|        |                   | Transmit Timing                                 |                      |                |      |  |  |  |
| 1      | tw(TXSTART)       | Pulse width, transmit start bit                 | U <sup>(1)</sup> - 2 | U + 2          | ns   |  |  |  |
| 2      | tw(TXH)           | Pulse width, transmit data/parity bit high      | U - 2                | U + 2          | ns   |  |  |  |
| 2      | tw(TXL)           | Pulse width, transmit data/parity bit low       | U - 2                | U + 2          | ns   |  |  |  |
| 3      | tw(TXSTOP1)       | Pulse width, transmit stop bit 1                | U - 2                | U + 2          | ns   |  |  |  |
| 3      | tw(TXSTOP15)      | Pulse width, transmit stop bit 1.5              | 1.5 * (U - 2)        | 1.5 * ('U + 2) | ns   |  |  |  |
| 3      | tw(TXSTOP2)       | Pulse width, transmit stop bit 2                | 2 * (U - 2)          | 2 * ('U + 2)   | ns   |  |  |  |
|        |                   | Autoflow Timing Requirements                    |                      | <u>.</u>       |      |  |  |  |
| 7      | td(RX-RTSH)       | Delay time, STOP bit received to RTS deasserted | P <sup>(2)</sup>     | 5P             | ns   |  |  |  |
| End of | End of Table 7-73 |                                                 |                      |                |      |  |  |  |

1 U = UART baud time = 1/programmed baud rate

2 P = 1/SYSCLK7

#### Figure 7-49 **UART Transmit Timing Waveform**



#### UART RTS (Request-to-Send Output) — Autoflow Timing Waveform Figure 7-50



### 7.17 PCIe Peripheral

The two-lane PCI express (PCIe) module on the device provides an interface between the DSP and other PCIe-compliant devices. The PCI Express module provides low-pin-count, high-reliability, and high-speed data transfer at rates of 5.0 GBaud per lane on the serial links. For more information, see the Peripheral Component Interconnect Express (PCIe) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72. The PCIe electrical requirements are fully specified in the PCI Express Base Specification Revision 2.0 of PCI-SIG. TI has performed the simulation and system characterization to ensure all PCIe interface timings in this solution are met; therefore, no electrical data/timing information is supplied here for this interface.



### 7.18 TSIP Peripheral

The telecom serial interface port (TSIP) module provides a glueless interface to common telecom serial data streams. For more information, see the *Telecom Serial Interface Port (TSIP) for the C66x DSP User Guide* in "Related Documentation from Texas Instruments" on page 72.

### 7.18.1 TSIP Electrical Data/Timing

### Table 7-74Timing Requirements for TSIP 2x Mode (1)

| (see <mark>Fig</mark> | see Figure 7-51)            |                                                     |                          |     |      |  |  |
|-----------------------|-----------------------------|-----------------------------------------------------|--------------------------|-----|------|--|--|
| No.                   |                             |                                                     | Min                      | Max | Unit |  |  |
| 1                     | t <sub>c</sub> (CLK)        | Cycle time, CLK rising edge to next CLK rising edge | 61 <sup>(2)</sup>        |     | ns   |  |  |
| 2                     | t <sub>w</sub> (CLKL)       | Pulse duration, CLK low                             | 0.4×t <sub>c</sub> (CLK) |     | ns   |  |  |
| 3                     | t <sub>w</sub> (CLKH)       | Pulse duration, CLK high                            | 0.4×t <sub>c</sub> (CLK) |     | ns   |  |  |
| 4                     | t <sub>t</sub> (CLK)        | Transition time, CLK high to low or CLK low to high |                          | 2   | ns   |  |  |
| 5                     | t <sub>su</sub> (FS-CLK)    | Setup time, FS valid before rising CLK              | 5                        |     | ns   |  |  |
| 6                     | t <sub>h</sub> (CLK-FS)     | Hold time, FS valid after rising CLK                | 5                        |     | ns   |  |  |
| 7                     | t <sub>su</sub> (TR-CLK)    | Setup time, TR valid before rising CLK              | 5                        |     | ns   |  |  |
| 8                     | t <sub>h</sub> (CLK-TR)     | Hold time, TR valid after rising CLK                | 5                        |     | ns   |  |  |
| 9                     | t <sub>d</sub> (CLKL-TX)    | Delay time, CLK low to TX valid                     | 1                        | 12  | ns   |  |  |
| 10                    | t <sub>dis</sub> (CLKH-TXZ) | Disable time, CLK low to TX Hi-Z                    | 2                        | 10  | ns   |  |  |
| End of                | End of Table 7-74           |                                                     |                          |     |      |  |  |

1 Polarities of XMTFSYNCP = 0b, XMTFCLKP = 0, XMTDCLKP = 1b, RCVFSYNCP = 0, RCVFCLKP = 0, RCVDCLKP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

2 Timing shown is for 8.192 Mbps links. Timing for 16.384 Mbps and 32.768 Mbps links is 30.5 ns and 15.2 ns, respectively.



### Figure 7-51 TSIP 2x Timing Diagram<sup>(1)</sup>

1 Example timeslot numbering shown is for 8.192 Mbps links; 16.384 Mbps links have timeslots numbered 0 through 255 and 32.768 Mbps links have timeslots numbered 0 through 511. The data timing shown relative to the clock and frame sync signals would require a RCVDATD=1 and a XMTDATD=1



#### Timing Requirements for TSIP 1x Mode<sup>(1)</sup> Table 7-75

#### (see Figure 7-52)

| No.    |                             |                                                     | Min                      | Max | Unit |
|--------|-----------------------------|-----------------------------------------------------|--------------------------|-----|------|
| 11     | t <sub>c</sub> (CLK)        | Cycle time, CLK rising edge to next CLK rising edge | 122.1 <sup>(2)</sup>     |     | ns   |
| 12     | t <sub>w</sub> (CLKL)       | Pulse duration, CLK low                             | 0.4×t <sub>c</sub> (CLK) |     | ns   |
| 13     | t <sub>w</sub> (CLKH)       | Pulse duration, CLK high                            | 0.4×t <sub>c</sub> (CLK) |     | ns   |
| 14     | t <sub>t</sub> (CLK)        | Transition time, CLK high to low or CLK low to high |                          | 2   | ns   |
| 15     | t <sub>su</sub> (FS-CLK)    | Setup time, FS valid before rising CLK              | 5                        |     | ns   |
| 16     | t <sub>h</sub> (CLK-FS)     | Hold time, FS valid after rising CLK                | 5                        |     | ns   |
| 17     | t <sub>su</sub> (TR-CLK)    | Setup time, TR valid before rising CLK              | 5                        |     | ns   |
| 18     | t <sub>h</sub> (CLK-TR)     | Hold time, TR valid after rising CLK                | 5                        |     | ns   |
| 19     | t <sub>d</sub> (CLKL-TX)    | Delay time, CLK low to TX valid                     | 1                        | 12  | ns   |
| 20     | t <sub>dis</sub> (CLKH-TXZ) | Disable time, CLK low to TX Hi-Z                    | 2                        | 10  | ns   |
| End of | Table 7-75                  |                                                     |                          | ļ   |      |

1 Polarities of XMTFSYNCP = 0b, XMTFCLKP = 0, XMTDCLKP = 0b, RCVFSYNCP = 0, RCVFCLKP = 0, RCVDCLKP = 1. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

2 Timing shown is for 8.192 Mbps links. Timing for 16.384 Mbps and 32.768 Mbps links is 61 ns and 30.5 ns, respectively.



#### TSIP 1x Timing Diagram<sup>(1)</sup> Figure 7-52

1 Example timeslot numbering shown is for 8.192 Mbps links; 16.384 Mbps links have timeslots numbered 0 through 255 and 32.768 Mbps links have timeslots numbered 0 through 511. The data timing shown relative to the clock and frame sync signals would require a RCVDATD=1023 and a XMTDATD=1023.



### 7.19 EMIF16 Peripheral

The EMIF16 module provides an interface between DSP and external memories such as NAND and NOR flash. For more information, see the *External Memory Interface (EMIF16) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

### 7.19.1 EMIF16 Electrical Data/Timing

## Table 7-76 EMIF16 Asynchronous Memory Timing Requirements <sup>(1) (2)</sup>

(see Figure 7-53 and Figure 7-54)

| No. |                            |                                                                             | Min                         | Max                         | Unit |  |  |  |
|-----|----------------------------|-----------------------------------------------------------------------------|-----------------------------|-----------------------------|------|--|--|--|
|     |                            | General Timing                                                              |                             |                             |      |  |  |  |
| 2   | t <sub>w</sub> (WAIT)      | Pulse duration, WAIT assertion and deassertion minimum time                 |                             | 2E                          | ns   |  |  |  |
| 28  | t <sub>d</sub> (WAIT-WEH)  | Setup time, WAIT asserted before WE high                                    |                             | 4E + 3                      | ns   |  |  |  |
| 14  | t <sub>d</sub> (WAIT-OEH)  | Setup time, WAIT asserted before OE high                                    |                             | 4E + 3                      | ns   |  |  |  |
|     | Read Timing                |                                                                             |                             |                             |      |  |  |  |
| 3   | t <sub>C</sub> (CEL)       | EMIF read cycle time when ew = 0, meaning not in extended wait mode         | (RS+RST+RH+3)*<br>E-3       | (RS+RST+RH+3)*<br>E+3       | ns   |  |  |  |
| 3   | t <sub>C</sub> (CEL)       | EMIF read cycle time when ew =1, meaning extended wait mode enabled         | (RS+RST+WAIT+<br>RH+3)* E-3 | (RS+RST+WAIT+<br>RH+3)* E+3 | ns   |  |  |  |
| 4   | t <sub>osu</sub> (CEL-OEL) | Output setup time from CE low to OE low. SS = 0, not in select strobe mode  | (RS+1) * E - 3              | (RS+1) * E + 3              | ns   |  |  |  |
| 5   | t <sub>oh</sub> (OEH-CEH)  | Output hold time from OE high to CE high. SS = 0, not in select strobe mode | (RH+1) * E - 3              | (RH+1) * E + 3              | ns   |  |  |  |
| 4   | t <sub>osu</sub> (CEL-OEL) | Output setup time from CE low to OE low in select strobe mode, SS = 1       | (RS+1) * E - 3              | (RS+1) * E + 3              | ns   |  |  |  |
| 5   | t <sub>oh</sub> (OEH-CEH)  | Output hold time from OE high to CE high in select strobe mode, $SS = 1$    | (RH+1) * E - 3              | (RH+1) * E + 3              | ns   |  |  |  |
| 6   | t <sub>osu</sub> (BEV-OEL) | Output setup time from BE valid to OE low                                   | (RS+1) * E - 3              | (RS+1) * E + 3              | ns   |  |  |  |
| 7   | t <sub>oh</sub> (OEH-BEIV) | Output hold time from OE high to BE invalid                                 | (RH+1) * E - 3              | (RH+1) * E + 3              | ns   |  |  |  |
| 8   | t <sub>osu</sub> (AV-OEL)  | Output setup time from A valid to OE low                                    | (RS+1) * E - 3              | (RS+1) * E + 3              | ns   |  |  |  |
| 9   | t <sub>oh</sub> (OEH-AIV)  | Output hold time from OE high to A invalid                                  | (RH+1) * E - 3              | (RH+1) * E + 3              | ns   |  |  |  |
| 10  | t <sub>w</sub> (OEL)       | OE active time low, when ew = 0. Extended wait mode is disabled.            | (RST+1) * E - 3             | (RST+1) * E + 3             | ns   |  |  |  |
| 10  | t <sub>w</sub> (OEL)       | OE active time low, when ew = 1. Extended wait mode is enabled.             | (RST+1) * E - 3             | (RST+1) * E + 3             | ns   |  |  |  |
| 11  | t <sub>d</sub> (WAITH-OEH) | Delay time from WAIT deasserted to OE# high                                 |                             | 4E + 3                      | ns   |  |  |  |
| 12  | t <sub>su</sub> (D-OEH)    | Input setup time from D valid to OE high                                    | 3                           |                             | ns   |  |  |  |
| 13  | t <sub>h</sub> (OEH-D)     | Input hold time from OE high to D invalid                                   | 0.5                         |                             | ns   |  |  |  |
|     |                            | Write Timing                                                                |                             |                             |      |  |  |  |
| 15  | t <sub>c</sub> (CEL)       | EMIF write cycle time when $ew = 0$ , meaning not in extended wait mode     | (WS+WST+WH+<br>3)* E-3      | (WS+WST+WH+<br>3)* E+3      | ns   |  |  |  |
| 15  | t <sub>c</sub> (CEL)       | EMIF write cycle time when ew =1., meaning extended wait mode is enabled    | (WS+WST+WAIT<br>+WH+3)* E-3 | (WS+WST+WAIT<br>+WH+3)* E+3 | ns   |  |  |  |
| 16  | t <sub>osu</sub> (CEL-WEL) | Output setup time from CE low to WE low. SS = 0, not in select strobe mode  | (WS+1) * E - 3              |                             | ns   |  |  |  |
| 17  | t <sub>oh</sub> (WEH-CEH)  | Output hold time from WE high to CE high. SS = 0, not in select strobe mode | (WH+1) * E - 3              |                             | ns   |  |  |  |
| 16  | t <sub>osu</sub> (CEL-WEL) | Output setup time from CE low to WE low in select strobe mode, SS = 1       | (WS+1) * E - 3              |                             | ns   |  |  |  |
| 17  | t <sub>oh</sub> (WEH-CEH)  | Output hold time from WE high to CE high in select strobe mode, SS = 1      | (WH+1) * E - 3              |                             | ns   |  |  |  |
| 18  | t <sub>osu</sub> (RNW-WEL) | Output setup time from RNW valid to WE low                                  | (WS+1) * E - 3              |                             | ns   |  |  |  |
| 19  | t <sub>oh</sub> (WEH-RNW)  | Output hold time from WE high to RNW invalid                                | (WH+1) * E - 3              |                             | ns   |  |  |  |
| 20  | t <sub>osu</sub> (BEV-WEL) | Output setup time from BE valid to WE low                                   | (WS+1) * E - 3              |                             | ns   |  |  |  |
| 21  | t <sub>oh</sub> (WEH-BEIV) | Output hold time from WE high to BE invalid                                 | (WH+1) * E - 3              |                             | ns   |  |  |  |
| 22  | t <sub>osu</sub> (AV-WEL)  | Output setup time from A valid to WE low                                    | (WS+1) * E - 3              |                             | ns   |  |  |  |
| 23  | t <sub>oh</sub> (WEH-AIV)  | Output hold time from WE high to A invalid                                  | (WH+1) * E - 3              |                             | ns   |  |  |  |



#### EMIF16 Asynchronous Memory Timing Requirements <sup>(1) (2)</sup> Table 7-76 (see Figure 7-53 and Figure 7-54)

| No.    |                            |                                                                  | Min             | Max    | Unit |  |  |
|--------|----------------------------|------------------------------------------------------------------|-----------------|--------|------|--|--|
| 24     | t <sub>w</sub> (WEL)       | WE active time low, when ew = 0. Extended wait mode is disabled. | (WST+1) * E - 3 |        | ns   |  |  |
| 24     | t <sub>w</sub> (WEL)       | WE active time low, when ew = 1. Extended wait mode is enabled.  | (WST+1) * E - 3 |        | ns   |  |  |
| 26     | t <sub>osu</sub> (DV-WEL)  | Output setup time from D valid to WE low                         | (WS+1) * E - 3  |        | ns   |  |  |
| 27     | t <sub>oh</sub> (WEH-DIV)  | Output hold time from WE high to D invalid                       | (WH+1) * E - 3  |        | ns   |  |  |
| 25     | t <sub>d</sub> (WAITH-WEH) | Delay time from WAIT deasserted to WE# high                      |                 | 4E + 3 | ns   |  |  |
| End of | End of Table 7-76          |                                                                  |                 |        |      |  |  |

1 E = 1/SYSCLK7, RS = Read Setup, RST = Read Strobe, RH = Read Hold, WS = Write Setup, WST = Write Strobe, WH = Write Hold.

2 WAIT = number of cycles wait is asserted between the programmed end of the strobe period and wait de-assertion.

#### Figure 7-53 EMIF16 Asynchronous Memory Read Timing Diagram



#### Figure 7-54 EMIF16 Asynchronous Memory Write Timing Diagram






Figure 7-55 EMIF16 EM\_WAIT Read Timing Diagram

2

Asserted



EMIFWE

EMIFWAIT

The packet accelerator provides L2 to L4 classification functionalities. It supports classification for Ethernet, VLAN, MPLS over Ethernet, IPv4/6, GRE over IP, and other session identification over IP such as TCP and UDP ports. It maintains 8K multiple-in, multiple-out hardware queues. It also provides checksum capability as well as some QoS capabilities. It enables a single IP address to be used for a multi-core device. It can process up to 1.5 M pps. The packet accelerator is coupled with the network coprocessor. For more information, see the Packet Accelerator (PA) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.

28

2

Deasserted

25

#### 7.21 Security Accelerator

The security accelerator provides wire-speed processing on 1-Gbps Ethernet traffic on IPSec, SRTP, and 3GPP Air interface security protocols. It functions on the packet level with the packet and the associated security context being one of these above three types. The security accelerator is coupled with network coprocessor, and receives the packet descriptor containing the security context in the buffer descriptor, and the data to be encrypted/decrypted in the linked buffer descriptor. For more information, see the Security Accelerator (SA) for KeyStone Devices User Guide in "Related Documentation from Texas Instruments" on page 72.



#### 7.22 Gigabit Ethernet (GbE) Switch Subsystem

The Gigabit Ethernet (GbE) switch subsystem provide an efficient interface between the TMS320C6672 DSP and the networked community. The GbE switch subsystem supports 10Base-T (10 Mbits/second [Mbps]), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. The GbE switch subsystem is coupled with network coprocessor. For more information, see the *Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

Each device has a unique MAC address. There are two registers to hold these values, MACID1 (0x02620110) and MACID2 (0x02620114). All bits of these registers are defined as follows:

#### Figure 7-57 MACID1 Register

| 31 |             | 0 |
|----|-------------|---|
|    | MACID[31:0] |   |
|    |             |   |

Legend: R = Read only; -x, value is indeterminate

#### Table 7-77 MACID1 Register Field Descriptions

| Bit      | Field             | Description                                                                                     |  |  |  |
|----------|-------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| 31-0     | MAC ID[31-0]      | MAC ID. A range will be assigned to this device. Each device will consume only one MAC address. |  |  |  |
| End of T | End of Table 7-77 |                                                                                                 |  |  |  |

#### Figure 7-58 MACID2 Register

| 31          | 24 | 23 |          | 18 | 17   | 16    | 15                    | 0 |
|-------------|----|----|----------|----|------|-------|-----------------------|---|
| Reserved    |    |    | Reserved |    | FLOW | BCAST | MACID[47:32]          |   |
| R-xxxx xxxx |    |    | R-0      |    | R-z  | R-y   | R-xxxx xxxx xxxx xxxx |   |

Legend: R = Read only; -x, value is indeterminate

#### Table 7-78 MACID2 Register Field Descriptions

| Bit      | Field             | Description                                                 |  |  |
|----------|-------------------|-------------------------------------------------------------|--|--|
| 31-24    | Reserved          | Reserved. Values will vary.                                 |  |  |
| 23-18    | Reserved          | Reserved. Read as 0.                                        |  |  |
| 17       | FLOW              | MAC flow control<br>0 = Off<br>1 = On                       |  |  |
| 16       | BCAST             | Default m/b-cast reception<br>0 = Broadcast<br>1 = Disabled |  |  |
| 15-0     | MAC ID[47-0]      | MACID                                                       |  |  |
| End of T | ind of Table 7-78 |                                                             |  |  |



There is one Time Synchronization (CPTS) submodule in the Ethernet switch module for time synchronization. Programming this register selects the clock source for the CPTS\_RCLK. See the *Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72 for the register address and other details about the Time Synchronization module. The register CPTS\_RFTCLK\_SEL for reference clock selection of Time Synchronization submodule is shown in Figure 7-59.

#### Figure 7-59 CPTS\_RFTCLK\_SEL Register

| 31 3     | 2      | 0         |
|----------|--------|-----------|
| Reserved | CPTS_R | FTCLK_SEL |
| R-0      | R      | W-0       |

Legend: R = Read only; -x, value is indeterminate

| Table 7-79 | CPTS_RFTCLK_SEL Register Field Descriptions |
|------------|---------------------------------------------|
|------------|---------------------------------------------|

| Bit      | Field           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31-3     | Reserved        | Reserved. Read as 0.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-0      | CPTS_RFTCLK_SEL | Reference Clock Select. This signal is used to control an external multiplexer that selects one of 8 clocks for time sync         reference (RFTCLK). This CPTS_RFTCLK_SEL value can be written only when the CPTS_EN bit is cleared to 0 in the         TS_CTL register.         000 = SYSCLK2         001 = SYSCLK3         010 = TIMI0         011 = TIMI1         100 = TSIP0 CLK_A         110 = TSIP1 CLK_B         111 = TSIP1 CLK_B |
| End of T | able 7-79       |                                                                                                                                                                                                                                                                                                                                                                                                                                             |



#### 7.23 Management Data Input/Output (MDIO)

The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and controls up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus. Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the GbE switch subsystem, retrieve the negotiation results, and configure required parameters in the GbE switch subsystem module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. For more information, see the *Gigabit Ethernet (GbE) Switch Subsystem for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

# Table 7-80MDIO Timing RequirementsSee Figure 7-60

| No.   |                   |                                                     | Min | Мах | Unit |  |  |  |
|-------|-------------------|-----------------------------------------------------|-----|-----|------|--|--|--|
| 1     | tc(MDCLK)         | Cycle time, MDCLK                                   | 400 |     | ns   |  |  |  |
| 2     | tw(MDCLKH)        | Pulse duration, MDCLK high                          | 180 |     | ns   |  |  |  |
| 3     | tw(MDCLKL)        | Pulse duration, MDCLK low                           | 180 |     | ns   |  |  |  |
| 4     | tsu(MDIO-MDCLKH)  | Setup time, MDIO data input valid before MDCLK high | 10  |     | ns   |  |  |  |
| 5     | th(MDCLKH-MDIO)   | Hold time, MDIO data input valid after MDCLK high   | 0   |     | ns   |  |  |  |
|       | tt(MDCLK)         | Transition time, MDCLK                              |     | 5   | ns   |  |  |  |
| End o | End of Table 7-80 |                                                     |     |     |      |  |  |  |

#### Figure 7-60 MDIO Input Timing



#### Table 7-81 MDIO Switching Characteristics

See Figure 7-61

| No.    |                   | Parameter                                       | Min | Max | Unit |  |  |
|--------|-------------------|-------------------------------------------------|-----|-----|------|--|--|
| 6      | td(MDCLKL-MDIO)   | Delay time, MDCLK low to MDIO data output valid |     | 100 | ns   |  |  |
| End of | End of Table 7-81 |                                                 |     |     |      |  |  |

#### Figure 7-61 MDIO Output Timing





#### 7.24 Timers

The timers can be used to: time events, count events, generate pulses, interrupt the CPU and send synchronization events to the EDMA3 channel controller.

#### 7.24.1 Timers Device-Specific Information

The TMS320C6672 device has ten 64-bit timers in total. Timer0 and Timer1 are dedicated to each of the two CorePacs as a watchdog timer and can also be used as general-purpose timers. Timer2 through Timer7 are reserved. Each of the other eight timers (Timer8 through Timer15) can also be configured as a general-purpose timer only, with each timer programmed as a 64-bit timer or as two separate 32-bit timers.

When operating in 64-bit mode, the timer counts either VBUS clock cycles or input (TINPLx) pulses (rising edge) and generates an output pulse/waveform (TOUTLx) plus an internal event (TINTLx) on a software-programmable period.

When operating in 32-bit mode, the timer is split into two independent 32-bit timers. Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx and TOUTLx are connected to the low counter. The timer pins, TINPHx and TOUTHx are connected to the high counter.

When operating in watchdog mode, the timer counts down to 0 and generates an event. It is a requirement that software writes to the timer before the count expires, after which the count begins again. If the count ever reaches 0, the timer event output is asserted. Reset initiated by a watchdog timer can be set by programming "Reset Type Status Register (RSTYPE)" on page 144 and the type of reset initiated can set by programming "Reset Configuration Register (RSTCFG)" on page 145. For more information, see the *Timer64P for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.



#### 7.24.2 Timers Electrical Data/Timing

The tables and figure below describe the timing requirements and switching characteristics of Timer0, Timer1 and Timer8 through Timer15peripherals.

#### Table 7-82 Timer Input Timing Requirements<sup>(1)</sup>

(see Figure 7-62)

| No.   |                       |                      | Min | Max | Unit |  |
|-------|-----------------------|----------------------|-----|-----|------|--|
| 1     | t <sub>w(TINPH)</sub> | Pulse duration, high | 12C |     | ns   |  |
| 2     | t <sub>w(TINPL)</sub> | Pulse duration, low  | 12C |     | ns   |  |
| End o | End of Table 7-82     |                      |     |     |      |  |

1 C = 1/SYSCLK1 frequency in ns.

# Table 7-83 Timer Output Switching Characteristics <sup>(1)</sup> (see Figure 7-62)

| No.    | Parameter                                  | Min     | Мах | Unit |  |  |
|--------|--------------------------------------------|---------|-----|------|--|--|
| 3      | t <sub>w(TOUTH)</sub> Pulse duration, high | 12C - 3 |     | ns   |  |  |
| 4      | t <sub>w(TOUTL)</sub> Pulse duration, low  | 12C - 3 |     | ns   |  |  |
| End of | End of Table 7-83                          |         |     |      |  |  |

1 C = 1/SYSCLK1 frequency in ns.

#### Figure 7-62 Timer Timing



#### 7.25 Serial RapidIO (SRIO) Port

The SRIO port on the TMS320C6672 device is a high-performance, low pin-count interconnect aimed for embedded markets. The use of the RapidIO interconnect in a baseband board design can create a homogeneous interconnect environment, providing even more connectivity and control among the components. RapidIO is based on the memory and device addressing concepts of processor buses where the transaction processing is managed completely by hardware. This enables the RapidIO interconnect to lower the system cost by providing lower latency, reduced overhead of packet data processing, and higher system bandwidth, all of which are key for wireless interfaces. For more information, see the *Serial RapidIO (SRIO) for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

#### 7.26 General-Purpose Input/Output (GPIO)

#### 7.26.1 GPIO Device-Specific Information

On the TMS320C6672, the GPIO peripheral pins GP[15:0] are also used to latch configuration pins. For more detailed information on device/peripheral configuration and the C6672 device pin muxing, see "Device Configuration" on page 73. For more information on GPIO, see the *General Purpose Input/Output (GPIO) for KeyStone Devices User Guide* "Related Documentation from Texas Instruments" on page 72.

#### 7.26.2 GPIO Electrical Data/Timing

#### Table 7-84 GPIO Input Timing Requirements

| No.   |                                | N                     | lin Max | Unit |  |
|-------|--------------------------------|-----------------------|---------|------|--|
| 1     | t <sub>w(GPOH)</sub> Pulse dui | ration, GPOx high 120 | . (1)   | ns   |  |
| 2     | t <sub>w(GPOL)</sub> Pulse dui | ration, GPOx low 1    | 2C      | ns   |  |
| End o | ind of Table 7-84              |                       |         |      |  |

1 C = 1/SYSCLK1 frequency in ns.

#### Table 7-85 GPIO Output Switching Characteristics

| No.   | Parameter                                      | Min Ma                 | x Unit |
|-------|------------------------------------------------|------------------------|--------|
| 3     | t <sub>w(GPOH)</sub> Pulse duration, GPOx high | 36C <sup>(1)</sup> - 8 | ns     |
| 4     | t <sub>w(GPOL)</sub> Pulse duration, GPOx low  | 36C - 8                | ns     |
| End o | of Table 7-85                                  |                        |        |

1 C = 1/SYSCLK1 frequency in ns.







### 7.27 Semaphore2

The device contains an enhanced semaphore module for the management of shared resources of the DSP C66x CorePacs. The semaphore enforces atomic accesses to shared chip-level resources so that the read-modify-write sequence is not broken. The semaphore block has unique interrupts to each of the cores to identify when that core has acquired the resource.

Semaphore resources within the module are not tied to specific hardware resources. It is a software requirement to allocate semaphore resources to the hardware resource(s) to be arbitrated.

The semaphore module supports 2 masters and contains 32 semaphores to be used within the system.

The semaphore module is accessible only by masters with privilege ID (privID) 0 to 1, which means only CorePac 0 to 1 or the EDMA transactions initiated by CorePac 0 to 1 can access the semaphore module.

If the remote device wants to access the semaphore module, the HyperLink configuration register must be appropriately configured, so the remote device can send transactions with the desired privID value to the local semaphore module. For more information on HyperLink configuration, see the *HyperLink for KeyStone Devices User Guide* in "Related Documentation from Texas Instruments" on page 72.

There are two methods of accessing a semaphore resource:

- Direct Access: A core directly accesses a semaphore resource. If free, the semaphore will be granted. If not, the semaphore is not granted.
- Indirect Access: A core indirectly accesses a semaphore resource by writing it. Once it is free, an interrupt notifies the CPU that it is available.

#### 7.28 Emulation Features and Capability

#### 7.28.1 Advanced Event Triggering (AET)

The TMS320C6672 device supports advanced event triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities:

- Hardware Program Breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture.
- **Data Watchpoints:** specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture.
- **Counters:** count the occurrence of an event or cycles for performance monitoring.
- **State Sequencing:** allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences.

For more information on AET, see the following documents in "Related Documentation from Texas Instruments" on page 72:

- Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report
- Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report



#### 7.28.2 Trace

The C6672 device supports Trace. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. Trace works in real-time and does not impact the execution of the system.

For more information on board design guidelines for Trace Advanced Emulation, see the *Emulation and Trace Headers Technical Reference Manual* in "Related Documentation from Texas Instruments" on page 72.

#### 7.28.2.1 Trace Electrical Data/Timing

#### Table 7-86 DSP Trace Switching Characteristics <sup>(1)</sup>

(see Figure 7-64)

| No. |                            | Parameter                                                                     | Min | Max | Unit |
|-----|----------------------------|-------------------------------------------------------------------------------|-----|-----|------|
| 1   | t <sub>w</sub> (EMUnH)     | Pulse duration, EMUn high detected at 50% Voh                                 | 2.4 |     | ns   |
| 1   | t <sub>w</sub> (EMUnH)90%  | Pulse duration, EMUn high detected at 90% Voh                                 | 1.5 |     | ns   |
| 2   | t <sub>w</sub> (EMUnL)     | Pulse duration, EMUn low detected at 50% Voh                                  | 2.4 |     | ns   |
| 2   | t <sub>w</sub> (EMUnL)10%  | Pulse duration, EMUn low detected at 10% Voh                                  | 1.5 |     | ns   |
| 3   | t <sub>sko</sub> (EMUn)    | Output skew time, time delay difference between EMUn pins configured as trace | -1  | 1   | ns   |
|     | t <sub>sldp_o</sub> (EMUn) | Output slew rate EMUn                                                         | 3.3 |     | V/ns |
| End | of Table 7-86              |                                                                               |     |     |      |

1 Over recommended operating conditions.

#### Table 7-87 STM Trace Switching Characteristics <sup>(1)</sup>

#### (see Figure 7-64)

| No. |                            | Parameter                                                                     | Min | Max | Unit |
|-----|----------------------------|-------------------------------------------------------------------------------|-----|-----|------|
| 1   | t <sub>w</sub> (EMUnH)     | Pulse duration, EMUn high detected at 50% Voh with 60/40 duty cycle           | 4   |     | ns   |
| 1   | t <sub>w</sub> (EMUnH)90%  | Pulse duration, EMUn high detected at 90% Voh                                 | 3.5 |     | ns   |
| 2   | t <sub>w</sub> (EMUnL)     | Pulse duration, EMUn low detected at 50% Voh with 60/40 duty cycle            | 4   |     | ns   |
| 2   | t <sub>w</sub> (EMUnL)10%  | Pulse duration, EMUn low detected at 10% Voh                                  | 3.5 |     | ns   |
| 3   | t <sub>sko</sub> (EMUn)    | Output skew time, time delay difference between EMUn pins configured as trace | -1  | 1   | ns   |
|     | t <sub>sldp_o</sub> (EMUn) | Output slew rate EMUn                                                         | 3.3 |     | V/ns |
| End | of Table 7-87              |                                                                               |     |     |      |

1 Over recommended operating conditions.

#### Figure 7-64 Trace Timing



EMUx represents the EMU output pin configured as the trace clock output. EMUy and EMUz represent all of the trace output data pins.



5FN3708E—March 2014

## 7.28.3 IEEE 1149.1 JTAG

The JTAG interface is used to support boundary scan and emulation of the device. The boundary scan supported allows for an asynchronous TRST and only the 5 baseline JTAG signals (e.g., no EMU[1:0]) required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification (IEEE1149.1), while all of the SerDes (SRIO and SGMII) support the AC-coupled net test defined in *AC-Coupled Net Test Specification* (IEEE1149.6).

It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant with the *Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit Specification* (EAI/JESD8-5).

#### 7.28.3.1 IEEE 1149.1 JTAG Compatibility Statement

For maximum reliability, the C6672 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the DSP's internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan operations.

#### 7.28.3.2 JTAG Electrical Data/Timing

#### Table 7-88 JTAG Test Port Timing Requirements

(see Figure 7-65)

| No. |                     |                                          | Min  | Мах | Unit |
|-----|---------------------|------------------------------------------|------|-----|------|
| 1   | t <sub>c(TCK)</sub> | Cycle time, TCK                          | 34   |     | ns   |
| 1a  | tw(TCKH)            | Pulse duration, TCK high (40% of tc)     | 13.6 |     | ns   |
| 1b  | tw(TCKL)            | Pulse duration, TCK low(40% of tc)       | 13.6 |     | ns   |
| 3   | tsu(TDI-TCK)        | input setup time, TDI valid to TCK high  | 3.4  |     | ns   |
| 3   | tsu(TMS-TCK)        | input setup time, TMS valid to TCK high  | 3.4  |     | ns   |
| 4   | th(TCK-TDI)         | input hold time, TDI valid from TCK high | 17   |     | ns   |
| 4   | th(TCK-TMS)         | input hold time, TMS valid from TCK high | 17   |     | ns   |
| End | of Table 7-88       |                                          |      |     |      |

### Table 7-89 JTAG Test Port Switching Characteristics <sup>(1)</sup>

(see Figure 7-65)

| No.   |                           | Parameter                        | Min Ma | d Unit |
|-------|---------------------------|----------------------------------|--------|--------|
| 2     | t <sub>d(TCKL-TDOV)</sub> | Delay time, TCK low to TDO valid | 13.    | 5 ns   |
| End o | of Table 7-89             |                                  |        |        |

1 Over recommended operating conditions.



#### Figure 7-65 JTAG Test-Port Timing





www.ti.com

#### 8 Revision History

#### **Revision E**

Updated EDMA addressing mode descriptions. (Page 157) Updated BWADJ value setting description in MAIN/DDR3/PASS PLL registers (Page 147) Added info for output clocks to 1.8-V LVCMOS Signal Transition Levels paragraph (Page 117) Updated Main PLL and PLL Controller figure: removed /2 label from PLL object (Page 137) Updated Rise and Fall Transition Time Voltage Reference Levels figure to include label for lower transition (Page 117) Clarified SmartReflex pin output type (Page 53) Clarified table caption and first column heading (Page 163) Corrected SmartReflex peripheral I/O Buffer Type from LVCMOS category to Open drain (Page 116) Revised Main PLL Clock Input Transition Time figure (Page 149) Corrected EMIF16 Boot Device Configuration Bit Fields (Page 26) Restored Parameter Information section (Page 117) Updated Core Before IO Power Sequencing diagram, changing clock signal SYSCLK1P&N to REFCLK1P&N (Page 120) Updated IO Before Core Power Sequencing diagram, changing clock signal SYSCLK1P&N to REFCLK1P&N (Page 122) Updated the PASS PLL Block Diagram (Page 153) Updated the Trace timing diagram (Page 225) Updated Parameter Table Index bit field in I2C boot configuration (Page 29) Updated Parameter Table Index bit field in SPI boot configuration (Page 30) Updated PKTDMA\_PRI\_ALLOC register to be CHIP\_MSIC\_CTL register with new bit field added. (Page 77) Updated OUTPUT\_DIVIDE default value and PLL clock formula in PLL Settings section (Page 38) Updated slow peripherals in SYSCLK7 description (Page 139) Updated Chip Select field description in SPI boot device configuration table (Page 30) Added DSP\_SUSP\_CTL register section (Page 77) **Revision D** Corrected NMI7-0 from bit fields 23-16 to bit fields 15-8 in LRSTNMIPINSTAT and LRSTNMIPINSTAT\_CLR registers (Page 80) Added Extended Boot Mode table in Boot Device Field section (Page 25) Updated event PO\_VP\_SMPSACK\_INTR to be Reserved in CIC3 event table (Page 175) Updated Trace Electrical Timing tables and Timing diagrams (Page 225) Updated event PO\_VCON\_SMPSERR\_INTR be Reserved in CIC0/1 Event Inputs table (Page 168) Added Boot Parameter Table section (Page 31) Added new section DDR3 Memory Controller Race Condition Consideration to include the last 3 paragraphs originally in section 7.11.1 (Page 197) Added REFCLK description in power sequencing section (Page 119) Added table of Bootloader section in L2 SRAM in Boot Sequence section (Page 23) Updated SYSCLK1 to REFCLK in power sequencing section to refer to the clock source of main PLL (Page 120) Updated note in power sequencing that each supply must ramp monotonically and must reach a stable valid level within 20 ms (Page 120) Corrected differential clock rise and fall time in the PLL timing table for the clock inputs that feed into the LJCB clock buffers (Page 148) Changed all footnote references from CORECLK to SYSCLK1 (Page 223) Updated PCIe privilege level from "Supervisor" to "Driven by PCIe module" (Page 185)

Corrected "Reserved" to be "Assert local reset to all CorePacs" in LRESET and NMI Decoding table (Page 182)

Added MPU Registers Reset Values section (Page 195)

Added "Initial Startup" row for CVDD in Recommended Operating Conditions table (Page 114)

Added DDR3PLLCTL1 and PASSPLLCTL1 registers to Device Status Control Registers table (Page 76)

Updated all SerDes clocks to discrete frequencies in the Clock Input Timing Requirements table (Page 148)

Corrected tj(CORECLKN/P) max value from 100 to 0.02\*tc(CORECLKN/P) (Page 148)

Corrected tj(DDRCLKN/P) max value from 0.025\*tc(DDRCLKN/P) to 0.02\*tc(DDRCLKN/P) (Page 152)

Corrected tj(PASSCLKN/P) max value from 100 to 0.02\*tc(PASSCLKN/P) (Page 155)

Updated the descriptions of how Semaphore module is accessible (Page 224)

Added Debug Subsystem Configuration region to memory map table (Page 19)

Added HOUT timing diagram in Host Interrupt Output section (Page 183)



www.ti.com Added note to DDR3 PLL initialization sequence (Page 151) Corrected MPU0 Memory Protection End Address from 0x026203FF to 0x026207FF (Page 184) Revised IPCGRH register description (Page 86) Corrected DDR3 transfer rate from 1033 MTS to 1066 MTS (Page 197) Added CVDD and SmartReflex voltage parameter in SmartReflex switching table (Page 125) Removed DDR3 PLL initialization sequence from data manual to PLL controller user guide (Page 151) Removed PASS PLL initialization sequence from data manual to PLL controller user guide (Page 154) Updated chip select from CS[5:2] to CE[3:0] in EMIF16 Peripheral section (Page 215) Updated EMIF chip select from CS[5:2] to CE[3:0] in Memory Map Summary table (Page 23) Updated DDR3 PLL initialization sequence (Page 152) Added footnote for DDR3 EMIF data in memory map summary table (Page 23) Updated Tracer descriptions across the data manual (Page 17) Corrected PASSCLK(N/P) max cycle time from 6.4 ns to 25 ns (Page 155) Updated the Timer numbering across the whole document (Page 18) Corrected PASS PLL clock to SRIOSGMIICLK in the boot device values table for Ethernet. (Page 25) Added clarification for RESETSTATz input current (Page 115) Added note for VCNTLID register that it is available for debug purpose only (Page 128) Added STM Trace Switching Characteristics table (Page 225) Removed the incorrect description of 16-Bit EMIF in Features section (Page 1) Updated th(MDCLKH-MDIO) value from 10 ns to 0 ns in MDIO Timing Requirements table (Page 220) Updated the description of NAND in the footnote of memory map summary table (Page 23) Updated tw(DPnH) and tw(DPnL) descriptions in Trace Switching Characteristics tables (Page 225) Updated I2C master mode table that bits[9:8] are used for mode selection (Page 28) Updated the I2C passive mode table that bits[9:8] are used for mode selection and actual value on the bus is 0x19+bits[7:5] (Page 29) Updated I2C data rate configuration descriptions in I2C Master Mode Configuration table (Page 28) Added PLLSELECT bit to PASSPLLCTL1 Register (Page 154) Added SPI device-specific support details (Page 204) Corrected that only the sticky bits in PCIe MMRs will be retained after soft reset (Page 133) **Revision C** Added note stating that both SGMII ports can be used for boot (Page 27) Updated the DDR3 MMR descriptions and deleted the unrelated PCIe MMR descriptions for soft reset. (Page 133) Corrected physical 36-bit addresses of DDR3 EMIF configuration/data (Page 23) Added TeraNet connection figures and added bridge numbers to the connection tables. (Page 96) Restricted Output Divide of SECCTL register to max value of divide by 2 (Page 141) Updated DEVSPEED register for both silicon rev1.0 and 2.0 (Page 93) Removed RESETFULLz parameter from 4b timing description (Page 121) Added supported data rates for HyperLink (Page 207) Changed chip level interrupt controller name from INTC to CIC (Page 162)

Changed TPCC to EDMA3CC and TPTC to EDMA3TC (Page 156)

Added PLLRST bit to DDR3PLLCTL1 register (Page 151) Added PLLRST bit to PASSPLLCTL1 register (Page 154)

Deleted INTCO register map address offset 0x4 and 0x8, which are Reserved (Page 176)

Corrected the SGMII SerDes clock to PASS clock in PASS PLL configuration description (Page 38)

Corrected PASS PLL clock from SRIOSGMIICLK to PASSCLK in the boot device values table for Ethernet. (Page 25)

Corrected the SPI and DDR3/HyperLink Config end addressed (Page 23)

Added the DDR3 PLL Initialization Sequence (Page 151)

Added the Main PLL and PLL Controller Initialization Sequence (Page 148)

Added the PASS PLL Initialization Sequence (Page 154)

Added HyperLink interrupt event section (Page 207)

Added events #144-159 to INTC2 event input table (Page 170)

Added DEVSPEED Register section. (Page 93)

Added more description to Boot Sequence section (Page 23)

Corrected a typo, changed DDRCLKN to DDRCLKP (Page 152)

### TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**

NSTRUMENTS

SPRS708E—March 2014

www.ti.com **Revision B** Removed section 7.1 Parameter Information (Page 117) Corrected PASS PLL clock source description from Main PLL mux to CORECLK clock reference sources (Page 153) Corrected MACID2 address from 0x02600114 to 0x02620114 (Page 218) Added EMIF16 Electrical Data/Timing section (Page 215) Added TSIP Electrical Data/Timing section (Page 213) Updated SPI Timing section (Page 204) Changed Data Rate 3 to Reserved from 12.5GBs in HyperLink configuration field table (Page 30) Corrected the Device ID field to be bits 5 to 3 in Ethernet Configuration Field figure and table (Page 27) Corrected the field bits of No Boot/EMIF16 configuration field figure and table (Page 26) **Revision A** Added note to RSISO register that both SRIOISO and SRISO will be set by boot ROM code during boot (Page 146) Removed AIF2ISO from Reset Isolation Register (Page 146) Added information of on-chip divider (=3) for PA in the PLL Boot Configuration Settings section (Page 38) Changed "no support for MSI" to "support for legacy INTx" for PCIe in legacy EP mode description in Device Status Register Field Descriptions table (Page 78) Changed "no support for MSI" to "support for legacy INTx" for PCIe legacy end point description in Device Configuration Pins table (Page 73) Added "The packet accelerator is coupled with network coprocessor" in the Packet Accelerator section (Page 217) Added Network Coprocessor document link (Page 72) Changed 2 to OUTPUT\_DIVIDE in the clock formula in PLL Boot Configuration Settings section (Page 38) Changed EMAC to GbE switch subsystem (Page 218) Changed EMAC to Gigabit Ethernet (GbE) Switch Subsystem (Page 220) Changed EMAC to Gigabit Ethernet Switch (Page 72) Changed EMAC to Network Coprocessor Packet DMA (Page 95) Changed PA\_SS into Network Coprocessor Packet DMA in Device Master Settings table (Page 184) Changed PA SS into PASS in the Clock Sequencing table (Page 124) Changed Packet Accelerator into Network Coprocessor and corrected the memory address in the memory map summary table (Page 17) Changed Packet Accelerator into network coprocessor in Security Accelerator section (Page 217) Changed Packet Accelerator into Network Coprocessor in the Device Configuration Pins table. (Page 73) Changed Packet Accelerator subsystem into Network Coprocessor (Page 153) Changed Packet Subsystem to Network Coprocessor (PASS PLL) in Terminal Functions table (Page 44) Changed PASS into Network Coprocessor (PASS) (Page 138) Changed PS\_SS\_CLK PLL to PASS\_CLK PLL in Terminal Functions table (Page 44) Deleted section 5.5 "C66x CorePac Resets" to avoid confusion and the reset details are covered in "Reset Controller" section (Page 105) Removed EMAC in Characteristics of the device Processor table (Page 13) Added BGA Package row into Characteristics of Processor table (Page 13) Corrected End and Bytes of DDR3 EMIF Configuration section in Memory Map Summary table (Page 17) Corrected BAR number from BAR1/2 to BAR2/3 and BAR3/4 to BAR4/5 in PCIe Window Sizes table (Page 28) Deleted EDMA3 Peripheral Register Description section, which is covered in EDMA user guide (Page 156) Added SerDes PLL Status and Config registers (Page 74) Added "to DDR3 memory space" to the first step of workaround (Page 197) Added "with TCCMOD=0" after "e.g. EDMA3 transfer controllers" (Page 197) Added CPTS\_RFTCLK\_SEL register in GbE Switch Subsystem section (Page 218) Changed "DSP/2" to "CPU/2" and "DSP/3" to "CPU/3" (Page 95) Changed the word "can" to "must" in the sentence "for most applications increment mode can be used" to specify it is a hard rule. (Page 157) Corrected the tw(RXSTOP15) and tw(RXSTOP2) values in UART Timing Requirements table (Page 211) Changed "sleep boot" to "No boot" in Sub-Mode field of No boot/EMIF16 Configuration Bit Field Descriptions table (Page 26) Changed Section 2.5.2.1 title from "Sleep/EMIF16" to "No Boot/EMIF16" (Page 26) Corrections Applied to I2C Passive Mode Device Configuration Bit Fields (Page 29) Corrections Applied to I2C Passive Mode Device Configuration Field Descriptions (Page 29) Modified description of value 0 to EMIF16/No Boot in Boot Device Values table (Page 25)



www.ti.com Corrected SRIO configuration memory map from 0x02900000~0x02907FFF to 0x02900000~0x02920FFF (Page 17) Added thermal values into the Thermal Resistance Characteristics table. (Page 233) Added DDR3PLLCTL1 register and field description table (Page 151) Added more description to pin PTV15 in the Terminal Functions table (Page 45) Added PASSPLLCTL1 register and field descriptions (Page 154) Added Master ID Settings table. (Page 185) Added the table of Power Supply to Peripheral I/O Mapping (Page 116) Changed PROGn\_MPEAR register table format and reset value format (Page 192) Changed PROGn\_MPSAR registers table format and reset value format (Page 192) Modified the figure of SmartReflex 4-Pin VID Interface Timing (Page 125) Modified the table of SmartReflex 4-Pin VID Interface Switching Characteristics (Page 125) Added PROG4 registers set into MPU1 Registers table (Page 188) Changed number of programmable ranges supported from 4 to 5 for MPU1 (Page 184) Modified reset values in MPU Configuration Register table (Page 191) Modified Table 2-13 to include 1000 MHz and 1250 MHz columns. (Page 38) Added BWADJ[11:8] to MAINPLLCTL1 register table and description. (Page 147) Changed Privilege ID from the second column to the first column (Page 184) Changed PROG3 MPEA to PROG3 MPEAR in MPU1 Registers table (Page 188) Changed Programmable range enumeration from 1-N based to 0-N based in MPU Register Map. (Page 187) Changed SRIO\_CPPI and SRIO\_M rows to the single row (Page 184) Changed the master from Reserved to HyperLink with Privilege ID 13 and 14 (Page 184) Modified BWADJ descriptions in MAINPLLCTL0 and MAINPLLCTL1 registers (Page 147) Modified SECCTL register reference place in the note. (Page 148) Corrected Clock Sequencing table - Removed ALTCORECLK reference, Corrected SYSCLK as CORECLK. (Page 124) Corrections Applied to I2C Boot Device Configuration Bit Fields (Page 28) Corrections Applied to Sleep / EMIF16 Boot Device Configuration Bit Fields (Page 26) Updated Device Configuration Pins Table; PACLKSEL Functional Description (Page 73) Updated Reset Electrical Data / Timing section. Included updated reset requirements. (Page 135) Updated Reset Electrical Data: Included updated Reset Requirements, (Page 135) Updated Table 2-3 Boot Mode Pins: Boot Device Values description of the Ethernet (SGMII) boots. (Page 25) Removed the SRIOSMGIICLK, MCMCLK, and PCIECLK transition timing values with respect to VOH and VOL within the Main PLL Controller timing requirements. (Page 148) Updated Terminal Descriptions of TSIP Pins (Page 54) Updated EMIF16 timing requirements table (Page 215) Added MAINPLLCTL1, Renamed DDR3PLLCTL0 to DDR3PLLCT, Renamed PAPLLCTL0 to PAPLLCTL (Page 74) Corrected the size of TETBs for the 4 cores from 16k to 4k (Page 17) Corrected the size of TETBs for the 4 cores from 16k to 4k (Page 17) Updated the complete Power-up sequencing section. RESETFULL must always de-assert after POR (Page 119) Added section NMI and LRSET. (Page 182) Corrected Extended Temperature range - Changed 105C to 100C for the top end. (Page 1) Added BWADJ bit field to DDR3 PLL Control Register. (Page 150) Added BWADJ bit field to PASS PLL Control Register. (Page 153) Added MAINPLLCTL1 register table and description. (Page 147) Added more detailed information on valid levels for CLKs and IOs during the power sequencing. (Page 119) Added Note on level interrupts and use of EOI handshaking. (Page 162) Corrected Address Range of I2C MMRs (Page 200) Corrected PACLKSEL bitfield description. (Page 78) Corrected RSV01 should be pulled up to 1.8 V and RSV08 should be tied to GND (Page 55) Changed CVDD Range; Corrected CVDD and CVDD1 Descriptions (CVDD: Core Supply -> SR Core Supply) (CVDD1: SR Core Supply -> Core Supply) (Page 114) Added more detailed information on valid levels for CLKs and IOs during the power sequencing. (Page 119) Added to table "Terminal Functions - Signals and Control by Function", signals - RSV0A and RSV0B. (Page 44) Corrected the timing pointers to point the correct figure (Page 135) Changed incorrect reserved address in Memory Map Summary - 02780400 -> 02778400 (Page 17)

# TMS320C6672 **Multicore Fixed and Floating-Point Digital Signal Processor**

SPRS708E—March 2014

Corrected Commercial Temperature range - Changed 100C to 85C for the top end. (Page 1)



www.ti.com



### 9 Mechanical Data

### 9.1 Thermal Data

Table 9-1 shows the thermal resistance characteristics for the CYP PBGA 841-pin package with Pb-free die bumps and Pb-free solder balls.

#### Table 9-1 Thermal Resistance Characteristics for CYP (PBGA 841-Pin Package)

| No.    |                                              | °C/W |
|--------|----------------------------------------------|------|
| 1      | R <sub>θ<sub>JC</sub></sub> Junction-to-case | 0.18 |
| 2      | Rθ <sub>JB</sub> Junction-to-board           | 3.71 |
| End of | Table 9-1                                    |      |

#### 9.2 Packaging Information

The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document.





#### PACKAGING INFORMATION

| Orderable Device   | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2) | Lead finish/<br>Ball material | MSL Peak Temp     | Op Temp (°C) | Device Marking<br>(4/5)                | Samples |
|--------------------|--------|--------------|--------------------|------|----------------|-----------------|-------------------------------|-------------------|--------------|----------------------------------------|---------|
|                    | (1)    |              | Diamig             |      | ۹.,            | (2)             | (6)                           | (3)               |              | (4/3)                                  |         |
| TMS320C6672ACYP    | ACTIVE | FCBGA        | CYP                | 841  | 44             | RoHS & Green    | Call TI   SNAGCU              | Level-4-245C-72HR | 0 to 85      | TMS320C6672CYP<br>@2010 TI             | Samples |
| TMS320C6672ACYP25  | ACTIVE | FCBGA        | СҮР                | 841  | 44             | RoHS & Green    | Call TI   SNAGCU              | Level-4-245C-72HR | 0 to 85      | TMS320C6672CYP<br>@2010 TI<br>1.25GHZ  | Samples |
| TMS320C6672ACYPA   | ACTIVE | FCBGA        | СҮР                | 841  | 44             | RoHS & Green    | Call TI   SNAGCU              | Level-4-245C-72HR | -40 to 100   | TMS320C6672CYP<br>@2010 TI<br>A        | Samples |
| TMS320C6672ACYPA25 | ACTIVE | FCBGA        | СҮР                | 841  | 44             | RoHS & Green    | Call TI   SNAGCU              | Level-4-245C-72HR | -40 to 100   | TMS320C6672CYP<br>@2010 TI<br>A1.25GHZ | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.



www.ti.com

7-Oct-2021

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# PACKAGE MATERIALS INFORMATION

5-Jan-2022

www.ti.com

Texas

INSTRUMENTS

#### TRAY



Chamfer on Tray corner indicates Pin 1 orientation of packed units.

| Device           | Package<br>Name | Package<br>Type | Pins | SPQ | Unit array<br>matrix | Max<br>temperature<br>(°C) | L (mm) | W<br>(mm) | K0<br>(µm) | P1<br>(mm) | CL<br>(mm) | CW<br>(mm) |
|------------------|-----------------|-----------------|------|-----|----------------------|----------------------------|--------|-----------|------------|------------|------------|------------|
| TMS320C6672ACYP  | CYP             | FCBGA           | 841  | 44  | 4 X 11               | 150                        | 315    | 135.9     | 7620       | 27.5       | 20         | 26.7       |
| TMS320C6672ACYPA | CYP             | FCBGA           | 841  | 44  | 4 X 11               | 150                        | 315    | 135.9     | 7620       | 27.5       | 20         | 26.7       |

CYP (S-PBGA-N841)

PLASTIC BALL GRID ARRAY



A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice. Β.
- C. Thermally enhanced plastic package with lid.
- D. Flip chip application only.
- E. Pb-free die bump and solder ball.



#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated