Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5V to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High side output in phase with input
- Internal 450ns dead-time
- Lower di/dt gate driver for better noise immunity
- Shut down input turns off both channels
- Leadfree, RoHS compliant

Typical Applications

- Appliance motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

HALF-BRIDGE DRIVER

Product Summary

V _{OFFSET}	600V Max
V _{OUT}	5V – 20V
I _{o+} & I _{o-} (typical)	200mA / 350mA
t _{ON} & t _{OFF} (typical)	650ns / 200ns
Delay Matching	50ns

Package Options

Ordering Information

Base Part Number	Pookogo Typo	Standard Pack		Complete Part Number
Dase Fait Number	ase Part Number Package Type		Quantity	
IRS2302S SOIC8N	SOIC8N	Tube/Bulk	95	IRS2302SPBF
IK323023	SOICON	Tape and Reel	2500	IRS2302STRPBF

.

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Table of Contents	Page
Ordering Information	1
Typical Connection Diagram	2
Description	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	7
Functional Block Diagram	8
Input/output Timing Diagram	9
Lead Definitions	10
Lead Assignments	10
Application Information and Additional Details	11
Package Details	13
Tape and Reel Details	14
Part Marking Information	15
Qualification Information	16

Description

The IRS2302S is a high voltage, high speed power MOSFET and IGBT driver with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600V.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating absolute voltage	-0.3	625	
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage	V _S -0.3	V _B + 0.3	V
V _{cc}	Low-side and logic fixed supply voltage	-0.3	25	v
V_{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (IN & SD)	COM -0.3	COM -0.3 V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient	—	50	V/ns
P _D	Package power dissipation @ TA $\leq 25^{\circ}$ C	—	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient — 200		°C/W	
TJ	Junction temperature — 150			
Ts	Storage temperature -50 150		°C	
TL	Lead temperature (soldering, 10 seconds)		300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S +5	V _S +20	
Vs	High-side floating supply offset voltage	† 1	600	
V _{HO}	High-side floating output voltage	Vs	V _B	N/
V _{cc}	Low-side and logic fixed supply voltage	5	20	V
V _{LO}	Low-side output voltage	0	V _{cc}	
V _{IN}	Logic input voltage (IN & SD)	СОМ	V _{cc}	
T _A	Ambient temperature	-40	125	°C

†: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to - V_{BS.}

(Please refer to the Design Tip DT97 -3 for more details).

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads: IN and SD. The V_{O_i} , I_O and R_{on} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Тур	Max	Units	Test conditions
V _{IH}	Logic "1" input voltage	2.5	—	_	v	V _{CC} = 10V to 20V
VIL	Logic "0" input voltage	_	_	0.8	V	$v_{\rm CC} = 100 \ 10 \ 200$
V _{OH}	High level output voltage, V_{BIAS} - V_{O}		_	0.2	V	I ₀ = 2mA
V _{OL}	Low level output voltage, $V_{\rm O}$	_	—	0.1	v	1 ₀ – 2111A
$V_{\text{SD, TH+}}$	SD input positive going threshold	2.5	_	_	v	1/22 = 101/42 = 201/
V _{SD, TH-}	SD input negative going threshold	_	_	0.8	V	Vcc = 10V to 20V
I _{LK}	Offset supply leakage current	_	_	50		$V_{\rm B}$ = $V_{\rm S}$ = 600V
I _{QBS}	Quiescent V_{BS} supply current	40	140	240	μA	V _{IN} = 0V or 5V
I _{QCC}	Quiescent V_{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V 0I 5V
I _{IN+}	Logic "1" input bias current	_	5	20		IN = 5V, SD = 0V
I _{IN-}	Logic "0" input bias current	_	_	5	μA	IN = 0V, SD = 5V
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold	3.3	4.1	5		
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	3	3.8	4.7	V	
V _{CCUVH} V _{BSUVH}	Hysteresis	0.05	0.3	_		
I _{O+}	Output high short circuit pulsed current		200		m۸	V _O = 0V, PW ≤ 10µs
I _{O-}	Output low short circuit pulsed current	_	350		mA	V _O = 15V, PW ≤ 10µs

Dynamic Electrical Characteristics

V_{BIAS} (V _{CC} , V _{BS}) = 15V, C _L = 1000pF, T _A = 25°C unle	ess otherwise specified.
--	--------------------------

Symbol	Definition	Min	Тур	Max	Units	Test conditions
t _{on}	Turn-on propagation delay	450	650	850		$V_{\rm S} = 0V$
t _{off}	Turn-off propagation delay		200	280		$V_{\rm S}$ = 0V or 600V
t _{sd}	Shut-down propagation delay		200	280		
MT	Delay matching, HS & LS turn-on/off	_	0	50		
t _r	Turn-on rise time		130	220	ns	$\lambda = 0 \lambda$
t _f	Turn-off fall time	_	50	80		$V_{\rm S} = 0V$
DT	Deadtime: LO turn-off to HO turn-on (DT _{LO-HO}) & HO turn-off to LO turn-on (DT _{HO-LO})	300	450	600		
MDT	Deadtime matching = DT _{LO-HO} – DT _{HO-LO}		0	60		

Functional Block Diagram:

Input/Output Pin Equivalent Circuit Diagrams:

Lead Definitions:

Symbol	Description		
V _{cc}	Low-side and logic fixed supply		
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO		
SD	Logic input for shutdown		
СОМ	Low-side return		
LO	Low-side gate drive output		
Vs	High-side floating supply return		
НО	High-side gate drive output		
V _B	High-side floating supply		

Lead Assignments

Application Information and Additional Details

Figure 2. Switching Time Waveform Definitions

Figure 3. Shutdown Waveform Definitions

Tolerability to Negative VS Transients

The IRS2302S can withstand negative VS transient conditions on the order of -25V for a period of 100 ns (V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C).

An illustration of the IRS2302S performance can be seen in Figure 6.

Even though the IRS2302S can handle these negative VS transient conditions, it is highly recommended that the circuit designer always limits the negative VS transients as much as possible with careful PCB layout and component use.

Figure 6: -Vs Transient results

Package Details

Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial	
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial	
Code	Min	Max	Min	Max	
A	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

Part Marking Information

Qualification Information[†]

		Industrial ^{††}
Qualification Level		Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.
Moisture Sensitivity Level		MSL2 ^{†††} 260°C
		(per IPC/JEDEC J-STD-020)
	Machine Model	Class B
ESD		(per JEDEC standard JESD22-A115)
	Human Body Model	Class 2
	Human Bouy Model	(per EIA/JEDEC standard EIA/JESD22-A114)
IC Latch-Up Test		Class I, Level A
		(per JESD78)
RoHS Compliant		Yes

- † Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>
- + Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- +++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245

Tel: (310) 252-7105