

NTE966 Integrated Circuit 3–Terminal Positive Voltage Regulator, 12V

The NTE966 fixed-voltage regulator is a monolithic integrated circuit in a TO220 type package designed for use in a wide variety of applications including local, on-card regulation. This regulator employs internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking it can deliver output currents in excess of 1.0 ampere.

Features:

- Output Current in Excess of 1.0 Ampere
- No External Components Reguired
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

Absolute Maximum Ratings: ($T_A = +25^{\circ}C$ unless otherwise specified)

Input Voltage, V _{in}	35Vdc
Power Dissipation ($T_A = +25^{\circ}C$), P_D	. Internally Limited
Derate above +25°C	15.4mW/°C
Power Dissipation ($T_C = +25^{\circ}C$), P_D	. Internally Limited
Derate above +75°C	200mW/°C
Thermal Resistance, Junction-to-Ambient, R _{thJA}	65°C/W
Thermal Resistance, Junction-to-Case, R _{thJC}	5°C/W
Operating Junction Temperature Range, T _J	−55° to +150°C
Storage Junction Temperature Range, T _{stg}	−65° to +150°C

<u>Electrical Characteristics</u>: (V_{in} = 19V, I_O = 500mA, T_J = 0° to +125°C unless otherwise specified)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Output Voltage	Vo	T _J = +25°C		11.5	12.0	12.5	V
		$5mA \leq I_O \leq 1A, \ P_O \leq 15W, \ 14.5V \leq V_{in} \leq 27V$		11.4	12.0	12.6	V
Line Regulation	Reg _{line}	T _J = +25°C, Note 1	$14.5V \le V_{in} \le 20V$	_	13	240	mV
			$16V \le V_{in} \le 22V$	_	6	120	mV
Load Regulation	Reg _{load}	T _J = +25°C, Note 1	$5mA \le I_O \le 1.5A$	-	45	160	mV
			$250mA \le I_O \le 750mA$	_	16	80	mV

Note 1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

<u>Electrical Characteristics (Cont'd)</u>: $(V_{in} = 19V, I_0 = 500mA, T_J = 0^{\circ} to +125^{\circ}C unless otherwise specified)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent Current	I _B	$T_{\rm J}$ = +25°C	-	4.4	8.0	mA
Quiescent Current Change	ΔI_B	$14.5V \le V_{in} \le 30V$	-	I	1.0	mA
		$5\text{mA} \le I_{O} \le 1\text{A}$	-	I	0.5	mA
Ripple Rejection	RR	$15V \le V_{in} \le 25V$, f = 120Hz	-	60	-	dB
Dropout Voltage	V _{in} – V _O	T _J = +25°C, I _O = 1A	-	2	-	V
Output Noise Voltage	V _n	$T_A = +25^{\circ}C$, $10Hz \le f \le 100kHz$	-	10	-	μ V/V _O
Output Resistance	r _O	f = 1kHz	-	18	-	mΩ
Short-Circuit Current Limit	I _{sc}	T _A = +25°C, V _{in} = 35V	-	0.2	-	А
Peak Output Current	I _{max}	$T_{\rm J}$ = +25°C	-	2.2	-	А
Average Temperature Coefficient of Output Voltage	TCVO		-	-1.0	-	mV/°C

Application Information:

The NTE966 fixed-voltage regulator is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitor is large. An input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense leads.

