Single 2-Input NOR Gate with Open Drain Output ## MC74VHC1G03, MC74VHC1GT03 The MC74VHC1G03 / MC74VHC1GT03 is a 2-input NOR Gate with an open drain output in tiny footprint packages. The input structures provide protection when voltages up to 5.5 V are applied, regardless of the supply voltage. This allows the device to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{\rm CC}=0$ V and when the output voltage exceeds $V_{\rm CC}$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - Designed for 2.0 V to 5.5 V V_{CC} Operation - 3.5 ns t_{PD} at 5 V (typ) - Inputs/Outputs Over-Voltage Tolerant up to 5.5 V - I_{OFF} Supports Partial Power Down Protection - Source/Sink 8 mA at 3.0 V - Available in SC-88A, SC-74A, TSOP-5, SOT-553, SOT-953 and UDFN6 Packages - Chip Complexity < 100 FETs - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Symbol #### ON Semiconductor® #### www.onsemi.com XX = Specific Device Code M = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet. Figure 2. Pinout (Top View) Figure 2. Fillout (10) #### **PIN ASSIGNMENT** (SC-88A/SOT-553/ TSOP-5/SC-74A) | Pin | Function | |-----|-----------------| | 1 | В | | 2 | А | | 3 | GND | | 4 | Y | | 5 | V _{CC} | #### PIN ASSIGNMENT (SOT-953) | Pin | Function | |-----|-----------------| | 1 | Α | | 2 | GND | | 3 | В | | 4 | Y | | 5 | V _{CC} | #### PIN ASSIGNMENT (UDFN) | Pin | Function | |-----|-----------------| | 1 | В | | 2 | Α | | 3 | GND | | 4 | Υ | | 5 | NC | | 6 | V _{CC} | #### **FUNCTION TABLE** | Inp | Output | | |-----|--------|---| | Α | В | Υ | | L | ┙ | Z | | L | Н | L | | Н | L | L | | Н | Н | L | #### **MAXIMUM RATINGS** | Symbol | Characteristics | | Value | Unit | |-------------------------------------|---|---|---|------| | V _{CC} | DC Supply Voltage TSOF SC-74A, SC-88A, UDFN6, S | P-5, SC-88A (NLV)
OT-553, SOT-953 | -0.5 to +7.0
-0.5 to +6.5 | V | | V_{IN} | DC Input Voltage TSOF SC-74A, SC-88A, UDFN6, S | P-5, SC-88A (NLV)
OT-553, SOT-953 | -0.5 to +7.0
-0.5 to +6.5 | V | | V _{OUT} | TSOP-5, SC-88A (NLV) | (High or Low State) tate Mode (Note 1) n Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +7.0
-0.5 to +7.0 | V | | | SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 Tri-S | (High or Low State)
tate Mode (Note 1)
n Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -20 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -20 | mA | | l _{OUT} | DC Output Source/Sink Current | | ± 25 | mA | | I _{CC} or I _{GND} | DC Supply Current per Supply Pin or Ground Pin | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 secs | | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Note 2) | SC-88A
SC-74A
SOT-553
SOT-953
UDFN6 | 377
320
324
254
154 | °C/W | | P _D | Power Dissipation in Still Air | SC-88A
SC-74A
SOT-553
SOT-953
UDFN6 | 332
390
386
491
812 | mW | | MSL | Moisture Sensitivity | | Level 1 | - | | F _R | Flammability Rating Oxy | gen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | | Human Body Model
rged Device Model | 2000
1000 | V | | I _{Latchup} | Latchup Performance (Note 4) | | ± 100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Applicable to devices with outputs that may be tri-stated. Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (March 1997). ^{4.} Tested to EIA/JESD78 Class II. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | | Characteristics | Min | Max | Unit | |---------------------------------|----------------------------|--|-------------|-------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | 2.0 | 5.5 | V | | V _{IN} | DC Input Voltage | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | TSOP-5, SC-88A (NLV) | 0 | V _{CC} | V | | | DC Output Voltage | SC-74A, SC-88A, UDFN6, SOT-553, SOT-953
Active-Mode (High or Low State)
Tri-State Mode (Note 1)
Power-Down Mode ($V_{\rm CC}$ = 0 V) | 0
0
0 | V _{CC}
5.5
5.5 | | | T _A | Operating Temperature Ran | ge | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time | TSOP-5, SC-88A (NLV)
V _{CC} = 3.0 V to 3.6 V
V _{CC} = 4.5 V to 5.5 V | 0
0 | 100
20 | ns/V | | | Input Rise and Fall Time | SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 $V_{CC}=2.0\ V$ $V_{CC}=2.3\ V\ to\ 2.7\ V$ $V_{CC}=3.0\ V\ to\ 3.6\ V$ $V_{CC}=4.5\ V\ to\ 5.5\ V$ | 0
0
0 | 20
20
10
5 | | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS (MC74VHC1G03) | | | Test | Voc | V_{CC} $T_A = 25^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$ | | -55°C ≤ T | Γ _A ≤ 125°C | | | | | |------------------|-----------------------------------|--|---------------------------------|---|-----------------------------|-----------------------------------|------------------------|-----------------------------------|------------------|-----------------------------------|------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | High-Level Input | | 2.0 | 1.5 | _ | - | 1.5 | - | 1.5 | - | V | | | Voltage | | 3.0 | 2.1 | _ | - | 2.1 | - | 2.1 | - | | | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | | | | | | 5.5 | 3.85 | - | - | 3.85 | - | 3.85 | - | | | V _{IL} | Low-Level Input | | 2.0 | - | _ | 0.5 | - | 0.5 | - | 0.5 | V | | | Voltage | | 3.0 | - | - | 0.9 | - | 0.9 | - | 0.9 | | | | | | 4.5 | - | _ | 1.35 | - | 1.35 | - | 1.35 | 1 | | | | | 5.5 | - | - | 1.65 | - | 1.65 | - | 1.65 | | | V _{OL} | Low-Level Output
Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \end{aligned}$ | 2.0
3.0
4.5
3.0
4.5 | -
-
-
- | 0.0
0.0
0.0
-
- | 0.1
0.1
0.1
0.36
0.36 | | 0.1
0.1
0.1
0.44
0.44 | -
-
-
- | 0.1
0.1
0.1
0.52
0.52 | V | | I _{IN} | Input Leakage
Current | V _{IN} = 5.5 V or
GND | 2.0
to 5.5 | - | _ | ±0.1 | - | ±1.0 | _ | ±1.0 | μΑ | | I _{OZ} | 3-State Output
Leakage Current | V _{OUT} = 0 V to 5.5 V | 5.5 | _ | - | ±0.25 | - | ±2.5 | _ | ± 2.5 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | _ | _ | 1.0 | - | 10 | - | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or
GND | 5.5 | _ | _ | 1.0 | ı | 20 | _ | 40 | μΑ | #### DC ELECTRICAL CHARACTERISTICS (MC74VHC1GT03) | | | Test | v _{cc} | 7 | Γ _A = 25° | С | -40°C ≤ 7 | Γ _A ≤ 85°C | -55°C ≤ T | _A ≤ 125°C | | |------------------|--|--|---------------------------------|------------------|-----------------------------|-----------------------------------|------------------|-----------------------------------|------------------|-----------------------------------|----------| | Symbol | Parameter | Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | High-Level Input | | 2.0 | 1.0 | _ | - | 1.0 | - | 1.0 | _ | ٧ | | | Voltage | | 3.0 | 1.4 | - | - | 1.4 | _ | 1.4 | - | | | | | | 4.5 | 2.0 | _ | - | 2.0 | - | 2.0 | _ | | | | | | 5.5 | 2.0 | - | 1 | 2.0 | - | 2.0 | - | | | V_{IL} | Low-Level Input | | 2.0 | - | - | 0.28 | ı | 0.28 | - | 0.28 | ٧ | | | Voltage | | 3.0 | - | - | 0.45 | ı | 0.45 | - | 0.45 | | | | | | 4.5 | - | - | 0.8 | ı | 0.8 | - | 0.8 | | | | | | 5.5 | _ | - | 0.8 | 1 | 0.8 | - | 0.8 | | | V _{OL} | Low-Level Output
Voltage | $\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 50 \mu\text{A} \\ &I_{OL} = 4 m\text{A} \\ &I_{OL} = 8 m\text{A} \end{aligned}$ | 2.0
3.0
4.5
3.0
4.5 | -
-
-
- | 0.0
0.0
0.0
-
- | 0.1
0.1
0.1
0.36
0.36 | -
-
-
- | 0.1
0.1
0.1
0.44
0.44 | -
-
-
- | 0.1
0.1
0.1
0.52
0.52 | V | | I _{IN} | Input Leakage Cur-
rent | V _{IN} = 5.5 V or
GND | 2.0
to 5.5 | _ | _ | ±0.1 | - | ±1.0 | - | ±1.0 | μΑ | | l _{OZ} | 3-State Output
Leakage Current | V _{OUT} = 0 V to
5.5 V | 5.5 | _ | _ | ±0.25 | - | ±2.5 | - | ± 2.5 | μΑ | | l _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | _ | _ | 1.0 | - | 10 | - | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or
GND | 5.5 | - | _ | 1.0 | - | 20 | _ | 40 | μΑ | | I _{CCT} | Increase in Quies-
cent Supply Current
per Input Pin | One Input: V _{IN}
= 3.4 V; Other
Input at V _{CC} or
GND | 5.5 | - | - | 1.35 | - | 1.5 | - | 1.65 | mA | #### **AC ELECTRICAL CHARACTERISTICS** | | | | | T | A = 25° | С | -40°C ≤ 7 | Γ _A ≤ 85°C | -55°C ≤ T | A ≤ 125°C | | |------------------|------------------------------------|---|---------------------|-----|---------|------|-----------|-----------------------|-----------|-----------|------| | Symbol | Parameter | Conditions | V _{CC} (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PZL} | Propagation Delay, | C _L = 15 pF | 3.0 to 3.6 | - | 5.6 | 7.9 | - | 9.5 | - | 11.0 | ns | | | (A or B) to Y
(Figures 3 and 4) | C _L = 50 pF | | - | 8.1 | 11.4 | - | 13.0 | _ | 15.5 | | | | ('9, | C _L = 15 pF | 4.5 to 5.5 | - | 3.6 | 5.5 | - | 6.5 | - | 8.0 | | | | | C _L = 50 pF | | - | 5.1 | 7.5 | - | 8.5 | _ | 10.0 | | | t _{PLZ} | Propagation Delay, | C _L = 15 pF | 3.0 to 3.6 | - | 6.5 | 9.7 | - | 11.5 | _ | 14.5 | ns | | | (A or B) to Y
(Figures 3 and 4) | C _L = 50 pF | | - | 8.1 | 11.4 | - | 13.0 | _ | 15.5 | | | | , | C _L = 15 pF | 4.5 to 5.5 | - | 4.8 | 6.8 | - | 8.0 | - | 10.0 | | | | | C _L = 50 pF | | _ | 5.1 | 7.5 | - | 8.5 | - | 10.0 | | | C _{IN} | Input Capacitance | | | - | 4.0 | 10 | - | 10 | - | 10 | pF | | C _{OUT} | Output Capacitance | Output in
High
Impedance
State | | - | 6.0 | - | - | - | - | - | pF | | Ī | | | Typical @ 25°C, V _{CC} = 5.0 V | | |---|----------|--|---|----| | | C_{PD} | Power Dissipation Capacitance (Note 5) | 8.0 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. X = Don't Care C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 3. Test Circuit Figure 4. Switching Waveforms | | | V _m | | | |---------------------|---------------------|-------------------------------------|---|--------------------| | V _{CC} , V | V _{mi} , V | t _{PLH} , t _{PHL} | t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ} | V _Y , V | | 3.0 to 3.6 | V _{CC} /2 | V _{CC} /2 | V _{CC} /2 | 0.3 | | 4.5 to 5.5 | V _{CC} /2 | V _{CC} /2 | V _{CC} /2 | 0.3 | #### **ORDERING INFORMATION** | Device | Packages | Specific Device Code | Pin 1 Orientation
(See below) | Shipping [†] | |--|-------------------------|----------------------|----------------------------------|-----------------------| | MC74VHC1G03DFT1G | SC-88A | VP | Q2 | 3000 / Tape & Reel | | MC74VHC1G03DFT2G | SC-88A | VP | Q4 | 3000 / Tape & Reel | | NLVVHC1G03DFT1G* | SC-88A | VP | Q2 | 3000 / Tape & Reel | | MC74VHC1GT03DFT1G
(In Development) | SC-88A | TBD | Q2 | 3000 / Tape & Reel | | MC74VHC1GT03DFT2G
(In Development) | SC-88A | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1G03DBVT1G | SC-74A | VP | Q4 | 3000 / Tape & Reel | | MC74VHC1GT03DBVT1G
(In Development) | SC-74A | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1G03DTT1G | TSOP-5 | VP | Q4 | 3000 / Tape & Reel | | MC74VHC1GT03DTT1G
(In Development) | TSOP-5 | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1G03XV5T2G
(In Development) | SOT-553 | TBD | Q4 | 4000 / Tape & Reel | | MC74VHC1GT03XV5T2G
(In Development) | SOT-553 | TBD | Q4 | 4000 / Tape & Reel | | MC74VHC1G03P5T5G
(In Development) | SOT-953 | TBD | Q2 | 8000 / Tape & Reel | | MC74VHC1GT03P5T5G
(In Development) | SOT-953 | TBD | Q2 | 8000 / Tape & Reel | | MC74VHC1G03MU1TCG
(In Development) | UDFN6, 1.45 x 1.0, 0.5P | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1GT03MU1TCG
(In Development) | UDFN6, 1.45 x 1.0, 0.5P | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1G03MU3TCG
(In Development) | UDFN6, 1.0 x 1.0, 0.35P | TBD | Q4 | 3000 / Tape & Reel | | MC74VHC1GT03MU3TCG
(In Development) | UDFN6, 1.0 x 1.0, 0.35P | TBD | Q4 | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### Pin 1 Orientation in Tape and Reel #### Direction of Feed ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. #### **PACKAGE DIMENSIONS** #### **SOT-553, 5 LEAD** CASE 463B ISSUE C - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. | | MILLIMETERS | | | | INCHES | | |-----|-------------|----------|------|-------|-----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 | | b | 0.17 | 0.22 | 0.27 | 0.007 | 0.009 | 0.011 | | С | 0.08 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | D | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | | E | 1.15 | 1.20 | 1.25 | 0.045 | 0.047 | 0.049 | | е | | 0.50 BSC | | | 0.020 BS0 | | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | HE | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** SOT-953 CASE 527AE ISSUE E - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE - MINIMUM THICKNESS OF THE BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN NOM MAX | | | | | Α | 0.34 | 0.37 | 0.40 | | | b | 0.10 | 0.15 | 0.20 | | | С | 0.07 | 0.12 | 0.17 | | | D | 0.95 | 1.00 | 1.05 | | | Е | 0.75 | 0.80 | 0.85 | | | е | 0.35 BSC | | | | | HE | 0.95 | 1.00 | 1.05 | | | L | 0.175 REF | | | | | L2 | 0.05 | 0.10 | 0.15 | | | L3 | | | 0.15 | | #### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **PACKAGE DIMENSIONS** #### PACKAGE DIMENSIONS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON S #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative **DATE 18 JAN 2018** #### **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS A AND R DO NOT INCLUDE MOLD. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 0.90 | 1.10 | | | A1 | 0.01 | 0.10 | | | b | 0.25 | 0.50 | | | С | 0.10 | 0.26 | | | D | 2.85 | 3.15 | | | E | 2.50 | 3.00 | | | E1 | 1.35 | 1.65 | | | е | 0.95 BSC | | | | L | 0.20 | 0.60 | | | M | 0 ° | 10° | | #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code Μ = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON66279G | Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|--|-------------| | DESCRIPTION: | SC-74A | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. #### SC-88A (SC-70-5/SOT-353) CASE 419A-02 **ISSUE L** **DATE 17 JAN 2013** - TIES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. 419A-01 OBSOLETE. NEW STANDARD 3. - 419A-02. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. | | INCHES | | MILLIN | IETERS | |-----|--------------------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.071 | 0.087 | 1.80 | 2.20 | | В | 0.045 | 0.053 | 1.15 | 1.35 | | С | 0.031 | 0.043 | 0.80 | 1.10 | | D | 0.004 | 0.012 | 0.10 | 0.30 | | G | 0.026 | BSC | 0.65 BSC | | | Н | | 0.004 | | 0.10 | | J | 0.004 | 0.010 | 0.10 | 0.25 | | K | 0.004 | 0.012 | 0.10 | 0.30 | | N | 0.008 REF 0.20 REF | | REF | | | S | 0.079 | 0.087 | 2.00 | 2.20 | #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. # -B-S D 5 PL 0.2 (0.008) M B M | | 0.0197 | | | | |--------|-------------------|--------|------------|--| | | < → | 1 | | | | _ | | _ | | <u> </u> | | | | | | 0.65
0.025 | | - | - | | <u> </u> | | | 0.40 | -
- | ı | | 0.65
0.025 | | 0.0157 | | | | | | | | 1.9 | | | | | - | 0.0748 | SCALE 20:1 | $\left(\frac{\text{mm}}{\text{inches}}\right)$ | **SOLDER FOOTPRINT** 0.50 | 3. BASE 3. BASE 3. ANODE 2 3. SOURCE 1 3. CA 4. COLLECTOR 4. CATHODE 2 4. GATE 1 4. CA' | THODE
OMMON ANODE
THODE 2
THODE 3
THODE 4 | |---|---| |---|---| | J. GOLLLOTON | 3. CATTODE | J. CATHODE I | J. GAIL 2 | J. CATTODE 4 | |---|---|--|--|---| | STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 | STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER | STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. | | DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------|---|-------------|--| | DESCRIPTION: | SC-88A (SC-70-5/SOT-35 | 63) | PAGE 1 OF 1 | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. TSOP-5 **CASE 483 ISSUE N** **DATE 12 AUG 2020** #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME - CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL - TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. | | MILLIMETERS | | | | |-----|-------------|----------|--|--| | DIM | MIN | MAX | | | | Α | 2.85 | 3.15 | | | | В | 1.35 | 1.65 | | | | C | 0.90 | 1.10 | | | | D | 0.25 | 0.50 | | | | G | 0.95 | 0.95 BSC | | | | Н | 0.01 | 0.10 | | | | J | 0.10 | 0.26 | | | | K | 0.20 | 0.60 | | | | М | 0 ° | 10 ° | | | | S | 2.50 | 3.00 | | | #### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code XXX = Specific Device Code = Assembly Location = Date Code = Year = Pb-Free Package = Work Week W = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ARB18753C | 753C Electronic versions are uncontrolled except when accessed directly from the Document Repo
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSOP-5 | | PAGE 1 OF 1 | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative