International

 $V_{CES} = 1200V$ $I_{C(Nominal)} = 20A$ $T_{J(max)} = 175^{\circ}C$ $V_{CE(on)} typ = 1.9V @ I_{C} = 20A$

Applications

- Medium Power Drives
- UPS

Г

- HEV Inverter
- Welding
- Induction Heating

Features	Benefits
	High efficiency in a wide range of applications and switching frequencies
	Improved Reliability due to rugged hard switching performance and higher power capability
Positive $V_{CE(ON)}$ Temperature Coefficient	Excellent current sharing in parallel operation

Base part number		Standa	rd Pack	Ordereble nert number	
Base part number	r Package Type	Form	Quantity	Orderable part number	
IRG7CH35UEF	Die on film	Wafer	1	IRG7CH35UEF	

Mechanical Parameter

Die Size	3.937 x 4.826	mm ²			
Minimum Street Width	75	μm			
Emiter Pad Size (Included Gate Pad)	See Die Drawing				
Gate Pad Size	0.503 x 0.501	mm ²			
Area Total / Active	19/10				
Thickness	120	μm			
Wafer Size	200	mm			
Flat Position	0	Degrees			
Maximum-Possible Chips per Wafer	1447 pcs				
Passivation Front side	Silicon Nitride	Silicon Nitride			
Front Metal	AI, Si (4µm)				
Backside Metal	Al- Ti - Ni- Ag (1kA°-1kA°-4kA°-6kA°)				
Die Bond	Electrically conductive epoxy or solder				
Reject Ink Dot Size	0.25 mm diameter minimum				

IRG7CH35UEF

Maximum Ratings

	Parameter	Max.	Units
V _{CE}	Collector-Emitter Voltage, TJ=25°C	1200	V
I _C	DC Collector Current	0	А
I _{LM}	Clamped Inductive Load Current ②	80	А
V _{GE}	Gate Emitter Voltage	± 30	V
TJ, T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) . TJ=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200				V _{GE} = 0V, I _C = 100µA ③
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.35	1.60	V	V _{GE} = 15V, I _C = 5A, T _J = 25°C
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	3.0		6.0		$I_{\rm C} = 600 \mu A$, $V_{\rm GE} = V_{\rm CE}$
I _{CES}	Zero Gate Voltage Collector Current		2.0	100	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 100	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$

Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
			1.9	2.2		V_{GE} = 15V, I_C = 20A , T_J = 25°C ④
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		2.4		V	V _{GE} = 15V, I _C = 20A , T _J = 175°C④
			FULL SQUARE			T _J = 175°C, I _C = 80A
RBSOA	Reverse Bias Safe Operating Area	FUL				V _{CC} = 960V, Vp ≤1200V
						Rg = 10Ω , V _{GE} = +20V to 0V
C _{iss}	Input Capacitance		1905			V _{GE} = 0V
C _{oss}	Output Capacitance		60		pF	V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		40			f = 1.0MHz,
Q _g	Total Gate Charge (turn-on)	—	85	_		I _C = 20A
Q _{ge}	Gate-to-Emitter Charge (turn-on)	_	15	_	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	35	_		$V_{CC} = 600V$

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions S
t _{d(on)}	Turn-On delay time		30	_		I _C = 20A, V _{CC} = 600V
t _r	Rise time	_	15	—		R _G = 10Ω, V _{GE} =15V, L=200μH
t _{d(off)}	Turn-Off delay time	_	160	—		T _J = 25°C
t _f	Fall time	_	80	—	200	
t _{d(on)}	Turn-On delay time	_	25	—	ns	I _C = 20A, V _{CC} = 600V
t _r	Rise time	_	20			R _G = 10Ω, V _{GE} =15V, L= 200μH
t _{d(off)}	Turn-Off delay time	_	200			T _J = 175°C
t _f	Fall time		200	_		

Die Drawing

Notes:

①The current in the application is limited by T_{JMax} and the thermal properties of the assembly. $@V_{CC} = 80\% (V_{CES}), V_{GE} = 20V, L = 200\mu H, R_G = 10\Omega.$ ③Refer to AN-1086 for guidelines for measuring $V_{(BR)CES}$ safely ④Die Level Characterization ⑤Values influenced by parasitic L and C in measurement

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your enquiry to http://die.irf.com

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.

International **TOR** Rectifier

IR WORLD HEADQUARTERS: 101N. Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.