# Linear Regulator, Low Dropout, Very Low I<sub>q</sub> The NCV8664 is a precision 3.3 V and 5.0 V fixed output, low dropout integrated voltage regulator with an output current capability of 150 mA. Careful management of light load current consumption, combined with a low leakage process, achieve a typical quiescent current of 22 $\mu A$ . NCV8664 is pin and functionally compatible with NCV4264 and NCV4264-2, and it could replace these parts when very low quiescent current is required. The output voltage is accurate within $\pm 2.0\%$ , and maximum dropout voltage is 600 mV at full rated load current. It is internally protected against input supply reversal, output overcurrent faults, and excess die temperature. No external components are required to enable these features. ### **Features** - 3.3 V, 5.0 V Fixed Output - ±2.0% Output Accuracy, Over Full Temperature Range - 30 μA Maximum Quiescent Current at I<sub>OUT</sub> = 100 μA - 600 mV Maximum Dropout Voltage at 150 mA Load Current - Wide Input Voltage Operating Range of 4.5 V to 45 V - Internal Fault Protection - → -42 V Reverse Voltage - ◆ Short Circuit/Overcurrent - Thermal Overload - NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - EMC Compliant - These are Pb-Free Devices ### ON Semiconductor® www.onsemi.com SOIC-8 Fused CASE 751 **MARKING** xx = Voltage Rating DPAK (50 = 5.0 V Version) (33 = 3.3 V Version) x = Voltage Rating SOT223 (5 = 5.0 V Version) (3 = 3.3 V Version) A = Assembly Location L = Wafer Lot Y = Year W, WW = Work Week ■ or G = Pb-Free Package (Note: Microdot may be in either location) ### **PIN CONNECTIONS** (SOT-223/DPAK) (SOIC-8 Fused) **FUNCTION** PIN **FUNCTION** PIN $V_{\text{IN}}$ 1 NC 2,TAB **GND** 2, $V_{IN}$ **GND** Vout 3 4. $V_{OUT}$ NC 5-8 ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. Figure 1. Block Diagram ### **PIN FUNCTION DESCRIPTION** | Pin No. | | | | |--------------|--------|------------------|--------------------------------------------------------------------------| | DPAK/SOT-223 | SOIC-8 | Symbol | Function | | 1 | 2 | V <sub>IN</sub> | Unregulated input voltage; 4.5 V to 45 V. | | 2 | 3 | GND | Ground; substrate. | | 3 | 4 | V <sub>OUT</sub> | Regulated output voltage; collector of the internal PNP pass transistor. | | TAB | - | GND | Ground; substrate and best thermal connection to the die. | | - | 1, 5–8 | NC | No Connection. | ### **OPERATING RANGE** | Pin Symbol, Parameter | Symbol | Min | Max | Unit | |----------------------------------------------|-----------------|-----|------|------| | V <sub>IN</sub> , DC Input Operating Voltage | V <sub>IN</sub> | 4.5 | +45 | V | | Junction Temperature Operating Range | TJ | -40 | +150 | °C | ### **MAXIMUM RATINGS** | Rating | Symbol | Min | Max | Unit | |-------------------------------------------|---------------------|------|------|------| | V <sub>IN</sub> , DC Voltage | V <sub>IN</sub> | -42 | +45 | V | | V <sub>OUT</sub> , DC Voltage | V <sub>OUT</sub> | -0.3 | +18 | V | | Storage Temperature | T <sub>stg</sub> | -55 | +150 | °C | | ESD Capability, Human Body Model (Note 1) | V <sub>ESDHB</sub> | 4000 | - | V | | ESD Capability, Machine Model (Note 1) | V <sub>ESDMIM</sub> | 200 | - | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. This device series incorporates ESD protection and is tested by the following methods: ESD HBM tested per AEC-Q100-002 (EIA/JESD22-A 114C) ### THERMAL RESISTANCE | Paramete | er | Symbol | Condition | Min | Max | Unit | |---------------------|---------------------------------|---------------|-----------|-------------|------------------------------------|------| | Junction-to-Ambient | DPAK<br>SOT-223<br>SOIC-8 Fused | $R_{ hetaJA}$ | | -<br>-<br>- | 101 (Note 2)<br>99 (Note 2)<br>145 | °C/W | | Junction-to-Case | DPAK<br>SOT-223<br>SOIC-8 Fused | $R_{ hetaJC}$ | | -<br>-<br>- | 9.0<br>17<br>- | °C/W | <sup>2. 1</sup> oz., 100 mm² copper area. ESD MM tested per AEC-Q100-003 (EIA/JESD22-A 115C) ### LEAD SOLDERING TEMPERATURE AND MSL | Rating | | Symbol | Min | Max | Unit | |----------------------------------------------|--------------|------------------|-----|--------|------| | Lead Temperature Soldering | | T <sub>sld</sub> | | | °C | | Reflow (SMD Styles Only), Lead Free (Note 3) | | | - | 265 pk | | | Moisture Sensitivity Level | SOT223 | MSL | 3 | _ | _ | | | DPAK | | 2 | _ | | | | SOIC-8 Fused | | 1 | - | | <sup>3.</sup> Lead Free, $60 \sec - 150 \sec$ above $217^{\circ}$ C, $40 \sec$ max at peak. ## **ELECTRICAL CHARACTERISTICS** ( $V_{IN}$ = 13.5 V, $T_j$ = -40°C to +150°C, unless otherwise noted.) | Characteristic | Symbol | Test Conditions | Min | Тур | Max | Unit | |----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----------------|---------| | Output Voltage<br>5.0 V Version | V <sub>OUT</sub> | $0.1 \text{ mA} \le I_{OUT} \le 150 \text{ mA (Note 4)}$<br>$6.0 \text{ V} \le V_{IN} \le 28 \text{ V}$ | 4.900 | 5.000 | 5.100 | V | | Output Voltage<br>5.0 V Version | V <sub>OUT</sub> | $0 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$<br>$5.5 \text{ V} \le V_{IN} \le 28 \text{ V}$<br>$-40^{\circ}\text{C} \le T_{J} \le 125^{\circ}\text{C}$ | 4.900 | 5.000 | 5.100 | V | | Output Voltage<br>3.3 V Version | V <sub>OUT</sub> | 0.1 mA $\leq$ I <sub>OUT</sub> $\leq$ 150 mA (Note 4)<br>4.5 V $\leq$ V <sub>IN</sub> $\leq$ 28 V | 3.234 | 3.300 | 3.366 | V | | Line Regulation<br>5.0 V Version | ΔV <sub>OUT</sub> vs. V <sub>IN</sub> | $I_{OUT} = 5.0 \text{ mA}$<br>$6.0 \text{ V} \le V_{IN} \le 28 \text{ V}$ | -25 | 5.0 | +25 | mV | | Line Regulation<br>3.3 V Version | $\Delta V_{OUT}$ vs. $V_{IN}$ | $I_{OUT} = 5.0 \text{ mA}$<br>$4.5 \text{ V} \le V_{IN} \le 28 \text{ V}$ | -25 | 5.0 | +25 | mV | | Load Regulation | ΔV <sub>OUT</sub> vs. I <sub>OUT</sub> | $1.0 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$ (Note 4) | -35 | 5.0 | +35 | mV | | Dropout Voltage<br>5.0 V Version | V <sub>IN</sub> -V <sub>OUT</sub> | I <sub>Q</sub> = 100 mA (Notes 4 & 5)<br>I <sub>Q</sub> = 150 mA (Notes 4 & 5) | -<br>- | 265<br>315 | 500<br>600 | mV | | Dropout Voltage<br>3.3 V Version | V <sub>IN</sub> -V <sub>OUT</sub> | I <sub>Q</sub> = 100 mA (Notes 4 & 7)<br>I <sub>Q</sub> = 150 mA (Notes 4 & 7) | -<br>- | -<br>- | 1.266<br>1.266 | V | | Quiescent Current | Iq | $I_{OUT} = 100 \mu A$ $T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C \text{ to } +85^{\circ}C$ | -<br>- | 21<br>22 | 29<br>30 | μΑ | | Active Ground Current | I <sub>G(ON)</sub> | I <sub>OUT</sub> = 50 mA (Note 4)<br>I <sub>OUT</sub> = 150 mA (Note 4) | -<br>- | 1.3<br>8.0 | 3<br>15 | mA | | Power Supply Rejection | PSRR | V <sub>RIPPLE</sub> = 0.5 V <sub>P-P</sub> , F = 100 Hz | - | 67 | _ | dB | | Output Capacitor for Stability 5.0 V Version | C <sub>OUT</sub><br>ESR | I <sub>OUT</sub> = 0.1 mA to 150 mA<br>(Note 4) | 10<br>- | -<br>- | -<br>9.0 | μF<br>Ω | | Output Capacitor for Stability 3.3 V Version | C <sub>OUT</sub><br>ESR | I <sub>OUT</sub> = 0.1 mA to 150 mA<br>(Note 4) | 22<br>- | -<br>- | -<br>18 | μF<br>Ω | ### **PROTECTION** | Current Limit | I <sub>OUT(LIM)</sub> | V <sub>OUT</sub> = 4.5 V (5.0 V Version) (Note 4)<br>V <sub>OUT</sub> = 3.0 V (3.3 V Version) (Note 4) | 150<br>150 | - | 500<br>500 | mA | |-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|------------|---|------------|----| | Short Circuit Current Limit | I <sub>OUT(SC)</sub> | V <sub>OUT</sub> = 0 V (Note 4) | 100 | - | 500 | mA | | Thermal Shutdown Threshold | T <sub>TSD</sub> | (Note 6) | 150 | - | 200 | °C | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. <sup>4.</sup> Use pulse loading to limit power dissipation. Dropout voltage = (V<sub>IN</sub> – V<sub>OUT</sub>), measured when the output voltage has dropped 100 mV relative to the nominal value obtained with V<sub>IN</sub> = 13.5 V. Not tested in production. Limits are guaranteed by design. V<sub>DO</sub> = V<sub>IN</sub> – V<sub>OUT</sub>. For output voltage set to < 4.5 V, V<sub>DO</sub> will be constrained by the minimum input voltage. Figure 2. Measurement Circuit Figure 3. Applications Circuit # **Typical Curves** 6.0 5.0 4.0 3.0 2.0 1.0 0 0 1.0 4.0 5.0 6.0 7.0 8.0 3.0 INPUT VOLTAGE (V) Figure 4. ESR Characterization, 5.0 V Version Figure 5. Output Voltage vs. Input Voltage, 5.0 V Version Figure 6. Current Consumption vs. Output Load, 5.0 V Version Figure 7. Current Consumption vs. Output Load (Low Load), 5.0 V Version Figure 8. Quiescent Current vs. Temperature, 5.0 V Version Figure 9. Quiescent Current vs. Temperature, 5.0 V Version # **Typical Curves** 18 16 14 12 10 8.0 6.0 $R_L = 50 \Omega$ 4.0 2.0 = 100 $\Omega$ 0 20 10 30 40 50 0 INPUT VOLTAGE (V) Figure 10. Dropout Voltage vs. Output Load, 5.0 V Version Figure 11. Current Consumption vs. Input Voltage, 5.0 V Version Figure 12. Output Current vs. Input Voltage, 5.0 V Version Figure 13. Output Voltage vs. Temperature, 5.0 V Version Figure 14. Current Limit vs. Temperature, 5.0 V Version # **Typical Curves** 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10 20 30 40 INPUT VOLTAGE (V) Figure 15. ESR Stability, 3.3 V Version Figure 16. Output Voltage vs. Input Voltage, 3.3 V Version Figure 17. Current Consumption vs. Output Load, 3.3 V Version Figure 18. Current Consumption vs. Output Load (Low Load), 3.3 V Version Figure 19. Quiescent Current vs. Temperature, 3.3 V Version Figure 20. Quiescent Current vs. Temperature, 3.3 V Version # **Typical Curves** CURRENT CONSUMPTION (mA) Figure 21. Dropout Voltage, 3.3 V Version Figure 22. Current Consumption vs. Input Voltage, 3.3 V Version Figure 23. Output Voltage vs. Temperature, 3.3 V Version Figure 24. Short Circuit Current Limit vs. Temperature, 3.3 V Version ### **Circuit Description** The NCV8664 is a precision trimmed 3.3 V and 5.0 V fixed output regulator. Careful management of light load consumption combined with a low leakage process results in a typical quiescent current of 22 μA. The device has current capability of 150 mA, with 600 mV of dropout voltage at full rated load current. The regulation is provided by a PNP pass transistor controlled by an error amplifier with a bandgap reference. The regulator is protected by both current limit and short circuit protection. Thermal shutdown occurs above 150°C to protect the IC during overloads and extreme ambient temperatures. ### Regulator The error amplifier compares the reference voltage to a sample of the output voltage ( $V_{out}$ ) and drives the base of a PNP series pass transistor by a buffer. The reference is a bandgap design to give it a temperature–stable output. Saturation control of the PNP is a function of the load current and input voltage. Over saturation of the output power device is prevented, and quiescent current in the ground pin is minimized. The NCV8664 is equipped with foldback current protection. This protection is designed to reduce the current limit during an overcurrent situation. ### **Regulator Stability Considerations** The input capacitor C<sub>IN</sub> in Figure 2 is necessary for compensating input line reactance. Possible oscillations caused by input inductance and input capacitance can be damped by using a resistor of approximately 1 $\Omega$ in series with C<sub>IN</sub>. The output or compensation capacitor, C<sub>OUT</sub> helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability. The capacitor value and type should be based on cost, availability, size and temperature constraints. Tantalum, aluminum electrolytic, film, or ceramic capacitors are all acceptable solutions, however, attention must be paid to ESR constraints. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures ( $-25^{\circ}$ C to $-40^{\circ}$ C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturer's data sheet usually provides this information. The value for the output capacitor C<sub>OUT</sub> shown in Figure 2 should work for most applications; however, it is not necessarily the optimized solution. Stability is guaranteed at values $C_{OUT} \ge 10 \,\mu\text{F}$ and ESR $\leq$ 9 $\Omega$ for 5.0 V version, and $C_{OUT} \geq$ 22 $\mu$ F and ESR $\leq$ 18 $\Omega$ for 3.3 V version, within the operating temperature range. Actual limits are shown in a graph in the Typical Performance Characteristics section. # Calculating Power Dissipation in a Single Output Linear Regulator The maximum power dissipation for a single output regulator (Figure 3) is: $$PD(max) = [VIN(max) - VOUT(min)] \cdot IQ(max) + VI(max) \cdot Iq$$ (eq. 1) Where: V<sub>IN(max)</sub> is the maximum input voltage, V<sub>OUT(min)</sub> is the minimum output voltage, $I_{Q(max)}$ is the maximum output current for the application, and $I_q$ is the quiescent current the regulator consumes at $I_{Q(max)}$ . Once the value of $P_{D(Max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated: $$P_{\theta JA} = \frac{150^{\circ}C - T_{A}}{P_{D}} \tag{eq. 2}$$ The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$ 's less than the calculated value in Equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required. The current flow and voltages are shown in the Measurement Circuit Diagram. ### **Heat Sinks** For proper heat sinking of the SOIC-8 Lead device, connect pins 5 – 8 to the heat sink. A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$ : $$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA$$ (eq. 3) Where: $R_{\theta JC}$ = the junction-to-case thermal resistance, $R_{\theta CS}$ = the case-to-heat sink thermal resistance, and $R_{\theta SA}$ = the heat sink-to-ambient thermal resistance. $R_{\theta JA}$ appears in the package section of the data sheet. Like $R_{\theta JA}$ , it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heat sink and the interface between them. These values appear in data sheets of heat sink manufacturers. Thermal, mounting, and heat sinking are discussed in the ON Semiconductor application note AN1040/D, available on the ON Semiconductor Website. ### **EMC-Characteristics: Conducted Susceptibility** All EMC-Characteristics are based on limited samples and not part of production testing, according to 47A/658/CD IEC62132-4 (Direct Power Injection) **Direct Power Injection:** 33 dBm forward power CW **Acceptance Criteria:** Amplitude Dev. max 2% of Output Voltage ### **Test Conditions** $\begin{array}{ll} \text{Supply Voltage} & V_{IN} = 12 \text{ V} \\ \text{Temperature} & T_A = 23^{\circ}\text{C} \pm 5^{\circ}\text{C} \\ \text{Load} & R_L = 35 \text{ }\Omega \end{array}$ Figure 25. Test Circuit Figure 26. Typical V<sub>IN</sub>-pin Susceptibility Figure 27. Typical V<sub>OUT</sub>-pin Susceptibility Figure 28. $\theta$ JA vs. Copper Spreader Area Figure 29. Single-Pulse Heating Curves ### **ORDERING INFORMATION** | Device* | Marking | Package | Shipping <sup>†</sup> | |----------------|---------|---------------------------|-----------------------| | NCV8664D50R2G | V6645 | SOIC-8 Fused<br>(Pb-Free) | 2500 / Tape & Reel | | NCV8664D50G | V6645 | SOIC-8 Fused<br>(Pb-Free) | 98 Units / Rail | | NCV8664DT50RKG | V66450G | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | | NCV8664DT33RKG | V66433G | DPAK<br>(Pb-Free) | 2500 / Tape & Reel | | NCV8664ST50T3G | V6645 | SOT-223<br>(Pb-Free) | 4000 / Tape & Reel | | NCV8664ST33T3G | V6643 | SOT-223<br>(Pb-Free) | 4000 / Tape & Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. <sup>\*</sup>NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** DETAIL A A1 SEE DETAIL A ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE. - 4. DATUMS A AND B ARE DETERMINED AT DATUM H. - 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. - 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61. | | MILLIMETERS | | | | |-----|-------------|----------|------|--| | DIM | MIN. | N□M. | MAX. | | | Α | 1.50 | 1.63 | 1.75 | | | A1 | 0.02 | 0.06 | 0.10 | | | b | 0.60 | 0.75 | 0.89 | | | b1 | 2.90 | 3.06 | 3.20 | | | c | 0.24 | 0.29 | 0.35 | | | D | 6.30 | 6.50 | 6.70 | | | E | 3.30 | 3.50 | 3.70 | | | е | | 2.30 BSC | ; | | | L | 0.20 | | | | | L1 | 1.50 | 1.75 | 2.00 | | | He | 6.70 | 7.00 | 7.30 | | | θ | 0* | | 10° | | RECOMMENDED MOUNTING FOOTPRINT | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Reposi<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 1 OF 2 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ### **SOT-223 (TO-261)** CASE 318E-04 ISSUE R **DATE 02 OCT 2018** | STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR | STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE | STYLE 3:<br>PIN 1. GATE<br>2. DRAIN<br>3. SOURCE<br>4. DRAIN | STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN | STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE | |-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------| | STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT | STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE | STYLE 8: CANCELLED | STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND | STYLE 10:<br>PIN 1. CATHODE<br>2. ANODE<br>3. GATE<br>4. ANODE | | STYLE 11:<br>PIN 1. MT 1<br>2. MT 2<br>3. GATE<br>4. MT 2 | STYLE 12:<br>PIN 1. INPUT<br>2. OUTPUT<br>3. NC<br>4. OUTPUT | STYLE 13:<br>PIN 1. GATE<br>2. COLLECTOR<br>3. EMITTER<br>4. COLLECTOR | | | # GENERIC MARKING DIAGRAM\* A = Assembly Location Y = Year W = Work Week XXXXX = Specific Device Code = Pb-Free Package (Note: Microdot may be in either location) \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42680B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | DESCRIPTION: | SOT-223 (TO-261) | | PAGE 2 OF 2 | ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DETAIL A** ROTATED 90° CW STYLE 2: STYLE 1: # **DPAK (SINGLE GAUGE)** CASE 369C ISSUE F **DATE 21 JUL 2015** - IOTES. 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI- - MENSIONS b3, L3 and Z. Jimensions b And E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. MENSIONS D AND E ARE DETERMINED AT THE - OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM - 7. OPTIONAL MOLD FEATURE. | | INCHES | | MILLIMETERS | | |-----|-----------|-------|-------------|-------| | DIM | MIN MAX | | MIN | MAX | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | b | 0.025 | 0.035 | 0.63 | 0.89 | | b2 | 0.028 | 0.045 | 0.72 | 1.14 | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | С | 0.018 | 0.024 | 0.46 | 0.61 | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | D | 0.235 | 0.245 | 5.97 | 6.22 | | E | 0.250 | 0.265 | 6.35 | 6.73 | | е | 0.090 | BSC | 2.29 BSC | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | L | 0.055 | 0.070 | 1.40 | 1.78 | | L1 | 0.114 | REF | 2.90 | REF | | L2 | 0.020 BSC | | 0.51 | BSC | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | L4 | | 0.040 | | 1.01 | | Z | 0.155 | | 3.93 | | ### **GENERIC MARKING DIAGRAM\*** XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package \*This information is generic. Please refer to device data sheet for actual part marking. ### SCALE 1:1 Α -h3 В L3 Ζ Ո **DETAIL A** NOTE 7 **BOTTOM VIEW** Cb2 е SIDE VIEW | $\oplus$ | 0.005 (0.13) lacktriangle C **TOP VIEW** Z Ħ L2 GAUGE C SEATING PLANE **BOTTOM VIEW A1** ALTERNATE CONSTRUCTIONS | OTTLL I. | OTTLL 2 | . , | JI I LL J. | U | 1166 7. | OTTLE J. | |--------------------------|---------------------------|--------|-------------------------|----------|-------------------------|---------------------------| | PIN 1. BASE | PIN 1. | GATE | PIN 1. ANODE | Ē | PIN 1. CATHODE | PIN 1. GATE | | <ol><li>COLLE</li></ol> | CTOR 2. | DRAIN | <ol><li>CATHO</li></ol> | DE | <ol><li>ANODE</li></ol> | 2. ANODE | | <ol><li>EMITTE</li></ol> | R 3. | SOURCE | <ol><li>ANODE</li></ol> | | <ol><li>GATE</li></ol> | <ol><li>CATHODE</li></ol> | | <ol><li>COLLE</li></ol> | CTOR 4. | DRAIN | <ol><li>CATHO</li></ol> | DE | <ol><li>ANODE</li></ol> | <ol><li>ANODE</li></ol> | | | | | | | | | | STYLE 6: | STYLE 7: | STYLE | 8: | STYLE 9: | | STYLE 10: | | PIN 1. MT1 | PIN 1. GATE | PIN 1. | N/C | PIN 1. A | NODE | PIN 1. CATHODE | | 2. MT2 | 2. COLLECT | ΓOR 2. | CATHODE | 2. C | ATHODE | <ol><li>ANODE</li></ol> | | <ol><li>GATE</li></ol> | <ol><li>EMITTER</li></ol> | 3. | ANODE | 3. R | ESISTOR ADJUST | <ol><li>CATHODE</li></ol> | | 4. MT2 | 4. COLLECT | ΓOR 4. | CATHODE | 4. C | ATHODE | 4. ANODE | STYLE 4: STYLE 5: STYLE 3: ### **SOLDERING FOOTPRINT\*** \*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled | | | |------------------|-------------------------------|-----------------------------------------------------------------------------|-------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document F<br>versions are uncontrolled except w | | | | NEW STANDARD: | REF TO JEDEC TO-252 | "CONTROLLED COPY" in red. | | | | DESCRIPTION: | DPAK SINGLE GAUGE SURFACE MOU | NT | PAGE 1 OF 2 | | | DOCUMENT | NUMBER: | |------------|---------| | 98AON10527 | 7D | PAGE 2 OF 2 | | <del>,</del> | | |-------|----------------------------------------------------------------------------------------------------------------------------------------|-------------| | ISSUE | REVISION | DATE | | 0 | RELEASED FOR PRODUCTION. REQ. BY L. GAN | 24 SEP 2001 | | Α | ADDED STYLE 8. REQ. BY S. ALLEN. | 06 AUG 2008 | | В | ADDED STYLE 9. REQ. BY D. WARNER. | 16 JAN 2009 | | С | ADDED STYLE 10. REQ. BY S. ALLEN. | 09 JUN 2009 | | D | RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE. | 29 JUN 2010 | | E | ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA. | 06 FEB 2014 | | F | ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA. | 21 JUL 2015 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. **DATE 16 FEB 2011** XS - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) - PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 BSC | | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° 8 ° | | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | ### **SOLDERING FOOTPRINT\*** 0.25 (0.010) M Z Y S \*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **GENERIC MARKING DIAGRAM\*** XXXXX = Specific Device Code = Assembly Location Α = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX = Specific Device Code = Assembly Location Α WW = Work Week = Pb-Free Package \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when | |------------------|---------------------------|-------------------------------------------------------------------------------------------------------| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | DESCRIPTION: | SOIC-8, NB | PAGE 1 OF 3 | ### SOIC-8 NB CASE 751-07 ISSUE AK ## **DATE 16 FEB 2011** | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | 4. LINE 2 IN | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when | |------------------|---------------------------|-------------------------------------------------------------------------------------------------------| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | DESCRIPTION: | SOIC-8. NB | PAGE 2 OF 3 | | DOCUMENT | NUMBER: | |------------|---------| | 98ASB42564 | В | PAGE 3 OF 3 | ISSUE | REVISION | DATE | |-------|------------------------------------------------------------------------------|-------------| | AB | ADDED STYLE 25. REQ. BY S. CHANG. | 15 MAR 2004 | | AC | ADDED CORRECTED MARKING DIAGRAMS. REQ. BY S. FARRETTA. | 13 AUG 2004 | | AD | CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY S. FARRETTA. | 18 NOV 2004 | | AE | UPDATED SCALE ON FOOTPRINT. REQ. BY S. WEST. | 31 JAN 2005 | | AF | UPDATED MARKING DIAGRAMS. REQ. BY S. WEST. ADDED STYLE 26. REQ. BY S. CHANG. | 14 APR 2005 | | AG | ADDED STYLE 27. REQ. BY S. CHANG. | 30 JUN 2005 | | AH | ADDED STYLE 28. REQ. BY S. CHANG. | 09 MAR 2006 | | AJ | ADDED STYLE 29. REQ. BY D. HELZER. | 19 SEP 2007 | | AK | ADDED STYLE 30. REQ. BY I. CAMBALIZA. | 16 FEB 2011 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** ### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative