

280 A

2.2 V

= 1200 V

# IGBT Module phaseleg

Preliminary data

IGBTs T1 - T2





## Features

C25

V<sub>CES</sub>

V<sub>CE(sat) typ.</sub> =

- NPT<sup>3</sup> IGBT
- low saturation voltage
- positive temperature coefficient
- fast switching
- short tail current for optimized
- erformance in resonant circuits • HiPerFRED<sup>™</sup> diodes
- fast and soft reverse recovery
- low operating forward voltage
- low leakage current
- Package
- low inductive current path
- screw connection to high current main terminals
- use of non interchangeable connectors for auxiliary terminals possible
- kelvin emitter terminal for easy drive
- isolated ceramic base plate

#### Applications

- drives
- AC
- DC
- power supplies

- rectifiers with power factor correction and recuperation capability

- UPS

| Symbol                               | Conditions                                                                                                                                       | Maximum Ra              |        |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|--|--|
| $V_{\text{ces}}$                     | $T_{vJ} = 25^{\circ}C$ to $125^{\circ}C$                                                                                                         | 1200                    | X      |  |  |
| $V_{\text{ges}}$                     |                                                                                                                                                  | ± 20                    | v      |  |  |
| I <sub>C25</sub><br>I <sub>C80</sub> | $T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$                                                                                                      | 280<br>200              | A<br>A |  |  |
| I <sub>см</sub><br>V <sub>сек</sub>  | $V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 7.5 \Omega; \text{ T}_{VJ} = 125^{\circ}\text{C}$<br><b>RBSOA</b> Clamped inductive load; L = 100 µH | 300<br>V <sub>CES</sub> | A      |  |  |
| t <sub>sc</sub><br>(SCSOA)           | $V_{CE}$ = 900 V; $V_{GE}$ = ±15 V; $R_G$ = 7.5 $\Omega$<br>$T_{VJ}$ = 125°C; non-repetitive                                                     | 10                      | μs     |  |  |
| P <sub>tot</sub>                     | $T_c = 25^{\circ}C$                                                                                                                              | 1100                    | W      |  |  |
| Symbol                               | Conditions                                                                                                                                       |                         |        |  |  |

## Symbol Conditions

## Characteristic Values

 $(T_{VI} = 25^{\circ}C, unless otherwise specified)$ 

|                                                                                                                                                     |                                                                                                                                                                                                                                                  | min. | typ.                               | max. |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|------|----------------------------|
| V <sub>CE(sat)</sub>                                                                                                                                | $I_{c} = 200 \text{ A}; V_{GE} = 15 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$<br>$T_{VJ} = 125^{\circ}\text{C}$                                                                                                                                  |      | 2.2<br>2.6                         | 2.8  | V<br>V                     |
| $V_{GE(th)}$                                                                                                                                        | $I_c = 6 \text{ mA}; V_{GE} = V_{GE}$                                                                                                                                                                                                            | 4.5  | 5.5                                | 6.5  | V                          |
| I <sub>CES</sub>                                                                                                                                    | $V_{CE} = V_{CES}; V_{GE} = 0 V; \qquad T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$                                                                                                                                                            |      | 0.8<br>3.5                         | 3.3  | mA<br>mA                   |
| <b>I</b> <sub>GES</sub>                                                                                                                             | $V_{ce} = 0 \text{ V}; V_{ge} = \pm 20 \text{ V}$                                                                                                                                                                                                |      |                                    | 400  | nA                         |
| $\begin{array}{c} \mathbf{t}_{d(on)} \\ \mathbf{t}_{r} \\ \mathbf{t}_{d(off)} \\ \mathbf{t}_{f} \\ \mathbf{E}_{on} \\ \mathbf{E}_{off} \end{array}$ | $\left. \begin{array}{l} \text{Inductive load, } T_{\text{VJ}} = 125^{\circ}\text{C} \\ V_{\text{CE}} = 600 \text{ V; } I_{\text{C}} = 200 \text{ A} \\ V_{\text{GE}} = \pm 15 \text{ V; } \text{R}_{\text{G}} = 7.5 \Omega \end{array} \right.$ |      | 170<br>60<br>680<br>50<br>29<br>20 |      | ns<br>ns<br>ns<br>mJ<br>mJ |
| C <sub>ies</sub><br>Q <sub>Gon</sub>                                                                                                                | $V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; \text{ f} = 1 \text{ MHz}$<br>$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; \text{ I}_{C} = 200 \text{ A}$                                                                                       |      | 11<br>1.16                         |      | nF<br>μC                   |
| $\mathbf{R}_{	ext{thJC}}$<br>$\mathbf{R}_{	ext{thJH}}$                                                                                              | (per IGBT)<br>with heatsink compound                                                                                                                                                                                                             |      | 0.22                               | 0.11 | K/W<br>K/W                 |



| Free wheeling diodes D1 - D2           |                                                                                                                                                         |                                                   |                              |            |            |            |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|------------|------------|------------|
| Symbol                                 | Conditions                                                                                                                                              |                                                   | Maximum Ratings              |            |            |            |
| I <sub>F25</sub><br>I <sub>F80</sub>   | $T_{c} = 25^{\circ}C$ $T_{c} = 80^{\circ}C$                                                                                                             |                                                   |                              |            | 300<br>190 | A<br>A     |
| Symbol                                 | Conditions                                                                                                                                              |                                                   | <b>Characteristic Values</b> |            |            |            |
|                                        |                                                                                                                                                         |                                                   | min.                         | typ.       | max.       |            |
| V <sub>F</sub>                         | $I_F = 200 \text{ A}; V_{GE} = 0 \text{ V};$                                                                                                            | $T_{VJ} = 25^{\circ}C$<br>$T_{VJ} = 125^{\circ}C$ |                              | 2.3<br>1.7 | 2.7        | V<br>V     |
| I <sub>RM</sub><br>t <sub>rr</sub>     | $ \label{eq:IF} \left. \begin{array}{l} I_{F} = 150 \text{ A};  di_{F}/dt = 1500 \\ V_{R} = 600 \text{ V};  V_{GE} = 0 \text{ V}; \end{array} \right. $ | A/μs;<br>Τ <sub>vJ</sub> = 125°C                  |                              | 160<br>220 |            | A<br>ns    |
| R <sub>thJC</sub><br>R <sub>thJH</sub> | (per IGBT)<br>with heatsink compound                                                                                                                    |                                                   |                              | 0.45       | 0.23       | K/W<br>K/W |

| Module                              |                                                |                          |          |  |
|-------------------------------------|------------------------------------------------|--------------------------|----------|--|
| Symbol                              | Conditions                                     | Maximum Ratings          |          |  |
| T <sub>vJ</sub><br>T <sub>stg</sub> | operating                                      | -40+150<br>-40+125       | °C<br>℃  |  |
| V <sub>ISO</sub>                    | $I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$  | 4000                     | ٧~       |  |
| M <sub>d</sub>                      | Mounting torque (module, M6)<br>(terminal, M6) | 2.25 - 2.75<br>4.5 - 5.5 | Nm<br>Nm |  |
| <u> </u>                            | <b>A</b>                                       |                          |          |  |

| Symbol                           | Conditions                                             | Characteristic Values |      |      |          |
|----------------------------------|--------------------------------------------------------|-----------------------|------|------|----------|
|                                  |                                                        | min.                  | typ. | max. |          |
| d <sub>s</sub><br>d <sub>A</sub> | Creepage distance on surface<br>Strike distance in air | 2<br>2                |      |      | mm<br>mm |
| Weight                           |                                                        |                       | 250  |      | g        |

## Dimensions in mm (1 mm = 0.0394")





IXYS reserves the right to change limits, test conditions and dimensions.



#### **Optional accessories for modules**

keyed twin plugs (UL758, style 1385, CSA class 5851,

guide 460-1-1)

• Type ZY180L with wire length 350mm

- for pins 4 (yellow wire) and 5 (red wire)

 $-\ensuremath{\,\text{for pins 11}}$  (yellow wire) and 10 (red wire)

• Type ZY180R with wire length 350mm

- for pins 7 (yellow wire) and 6 (red wire)

- for pins 8 (yellow wire) and 9 (red wire)